
Gaze Prediction for Recommender Systems

Qian Zhao, Shuo Chang, F. Maxwell Harper, Joseph A. Konstan
GroupLens Research

Dept. of Computer Science, University of Minnesota
Minneapolis, United States

{qian, schang, harper, konstan}@cs.umn.edu

ABSTRACT
As users browse a recommender system, they systematically
consider or skip over much of the displayed content. It seems
obvious that these eye gaze patterns contain a rich signal
concerning these users’ preferences. However, because eye
tracking data is not available to most recommender systems,
these signals are not widely incorporated into personaliza-
tion models. In this work, we show that it is possible to pre-
dict gaze by combining easily-collected user browsing data
with eye tracking data from a small number of users in a
grid-based recommender interface. Our technique is able
to leverage a small amount of eye tracking data to infer
gaze patterns for other users. We evaluate our prediction
models in MovieLens – an online movie recommender sys-
tem. Our results show that incorporating eye tracking data
from a small number of users significantly boosts accuracy
as compared with only using browsing data, even though
the eye-tracked users are different from the testing users
(e.g. AUC=0.823 vs. 0.693 in predicting whether a user
will fixate on an item). We also demonstrate that Hidden
Markov Models (HMMs) can be applied in this setting; they
are better than linear models in predicting fixation probabil-
ity and capturing the interface regularity through Bayesian
inference (AUC=0.823 vs. 0.757).
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1. INTRODUCTION
Recommender systems research has experienced a transi-

tion from modeling user preferences based on explicit feed-
back [36, 38], e.g. what users are rating to preference
modeling based on implicit feedback [25, 33], e.g. what
users are clicking. Nowadays, it has been recognized that
successful recommendations also need to take into account
user perceptions of recommendation properties such as di-
versity and serendipity [23, 31], user short-term information
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Figure 1: In this work, we predict user gaze in grid-
based user interfaces. Above are four such layouts –
YouTube (top-left), Hulu (top-right), Google Apps
(bottom-left) and MovieLens (bottom-right).

needs, user context, and mood, i.e. what users are think-
ing.

Understanding how users look at a recommender system’s
content will enable further improvements to how systems
model and react to user needs. As users browse a recom-
mender system, they systematically consider or skip over
much of the displayed content. It seems likely that these eye
gaze patterns contain a rich signal concerning these users’
state of mind. Indeed, early studies have shown the poten-
tial for improving recommender systems by incorporating
eye tracking data [43, 34].

The ability to incorporate eye tracking data into a recom-
mender system enables a variety of potential improvements.
For example, recommender systems currently do not know
which items are looked at and ignored versus simply not
looked at. But this is a critical distinction – if the user
looks and does not act, that inaction provides a signal that
can be used to influence whether and when to display that
item in the future, though interpreting whether such gazes
represent interest or lack thereof may require context and
further analysis.

Also, since recommender systems essentially provide de-
cision support for users, having user gaze enables more nu-
anced studies on user high-level decision-making processes
as demonstrated by researchers who study human decision
theory through eye tracking [17].

The biggest challenge to incorporating user gaze data into
recommender systems is a technical one: it requires eye
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tracking technology, which is generally not available outside
of specialized labs. It is possible that future systems will
make gaze detection a common feature available to system
builders, due to the ubiquitous presence of high-resolution
user-facing cameras. It is also possible that eye tracking
data will never be commonly used due to the privacy con-
cerns that such low-level tracking raises.

To address these challenges, in this work we show that it
is possible to model and predict user gaze without requir-
ing the deployment of ubiquitous eye tracking technology.
We predict gaze by combining easily-collected user browsing
data with eye tracking data from a small number of users.
Our technique is therefore able to leverage a small amount
of eye tracking data to infer gaze patterns for other users.

In this research, we model gaze in the context of a grid-
based user interface layout, which has become one of the
most common user interface layouts in recommender sys-
tems. For example, this is the layout used in YouTube,
Hulu, Google Apps, and MovieLens, as shown in Figure 1.
We address the following three research questions:

• RQ1: How accurately can we predict gaze on items in
a grid-based interface?

– based on models trained with only user brows-
ing data. (Specifically, item position in the in-
terface, user dwell time on the page, and actions
such as clicks, ratings and wishlistings on items.)

– based on models trained with collected eye track-
ing data for a small number of users in addition
to user browsing data.

• RQ2: How is gaze distributed on different positions in
a grid-based interface?

• RQ3: How does gaze prediction accuracy vary for dif-
ferent tasks or modes of usage?

We make the following contributions in this paper:

• We show that incorporating eye tracking data from a
small number of users significantly boosts gaze predic-
tion accuracy as compared with only using user brows-
ing data, even though the eye-tracked users are differ-
ent from testing users;

• We demonstrate that Hidden Markov Models (HMMs)
can be applied in this setting and that they are bet-
ter than baseline models in predicting fixation prob-
ability and capturing the interface regularity through
Bayesian inference.

2. RELATED WORK
Human attention theory. From cognitive sciences, two

main mechanisms guide the selection of human attention:
top-down and bottom-up (or endogenous vs. exogenous)
processes [4]. We can volitionally focus our attention ac-
cording to top-down task demands. On the other hand,
our attention may be drawn by bottom-up salient stimuli.
This dichotomy of attention is still under debate because it
involves the fundamental question of seeing attention as a
cause, as an effect or as a combination of both [37], which has
significant implication for interactive applications such as
recommender systems. Specific to visual attention, we focus
on reviewing overt attention [16] here, i.e. gaze is directed

to the attended location. Following Marr [30] and Itti’s [27]
seminal work, there has been plenty of research on modeling
visual attention in a bottom-up approach, i.e. saliency pre-
diction [29, 6]. However, researchers have started to criticize
the over-emphasis on low-level saliency representation of vi-
sual input and develop new models of gaze allocation guided
by top-down principles to account for complex natural vision
[41]. Tatler et al. [42] showed that a model based solely on
behavior biases and blind to current visual information can
outperform a salience-based approach. Top-down task de-
mands or regularities can be formalized with probability the-
ories, especially Bayesian statistics. For example, Markov
stochastic processes have been applied to model gaze tran-
sition behaviors, since it is intuitive to compare eye move-
ments to random walkers. Ellis and Stark [14] developed
a method to identify statistical dependencies in positions of
eye fixations based on Markov matrices and found that there
is statistical dependency among sequences of fixations inde-
pendent of the physical placement of the points of interest.
Further work built on this [20] modeled sequences of visual
fixations as Markov processes and introduced a quantitative
method to measure scanpath similarity based on character
strings. Henderson et al. [22] demonstrated that it is possi-
ble to classify the task that a person is engaged in, i.e. cogni-
tive states from their eye movements by multivariate pattern
classification specifically naive Bayes. Haji-Abolhassani et
al. [21] modeled eye trajectories as a noisy generative pro-
cess centered on the foci of attention directed by cognitive
processes using Hidden Markov Models. Our study builds
on this top-down approach. We do not model the saliency of
the displayed items on a page, but instead look at how high-
level information of item position presented in the interface
directs and regulates user gaze behavior.

Eye tracking and information retrieval. Joachims
et al. [18] pioneered the investigation of user behavior in
WWW search through eye tracking analysis. They found
that a higher rank in search results attracts more attention
and users do tend to scan the result list from top to bot-
tom. In information retrieval, machine learning algorithms
are used to learn the relevance between search queries and
web URLs from implicit clicking feedback [1]. Joachims et
al. [28] examined the reliability of this kind of feedback gen-
erated from clickthrough data using eye tracking and explicit
relevance judgement. They concluded that clicks are infor-
mative but biased, i.e. the position bias because of search
result presentation in a list layout. Following these findings,
various user attention and browsing models are proposed
to account for the bias in learning algorithms [8, 13, 9, 39]
for information retrieval. Chapelle and Zhang [7] built and
evaluated a dynamic Bayesian network model postulating
explicitly examination or attention, action and satisfaction
variables in addition to the observed clicking events. The
temporal or dynamic aspect of the model lies in the assump-
tion that users examine search results from top to bottom
one by one, which is reasonable in a list layout interface
and supported by previous work [18]. Because of the cost
of eye tracking, researchers have worked on approximating
gaze in two main approaches: gaze-contingent displays [12]
or restricted focus viewing and predicting gaze with mouse
positions [26, 19]. As an example, Buscher et al. [3] com-
pared segment-level display time of search results with eye
tracking and found that although it is much coarser, it works
as well as eye-tracking-based feedback for re-ranking and



query expansion. Going beyond applications of information
retrieval, Buscher et al. [2] worked on predicting gaze with
web page location-based characteristics as input and gener-
ating a model that can be used to improve web page layout
and design.

Eye tracking and recommender systems. Recom-
mender system researchers have been using eye tracking in
different ways. Since recommenders are considered an im-
portant decision support tool, Castagnos et al. [5] stud-
ied user decision making behaviors when purchasing prod-
ucts assisted by a recommender through eye tracking. They
showed that users actively click and gaze at recommended
products up to 40% of the time and consult the recommen-
dation area more as they approach the end of the decision
process. Another intuitive application based on eye tracking
in recommenders is to infer preference or relevance from user
gaze behavior. Xu et al. [43] proposed several algorithms to
make recommendations relying on the attention time cap-
tured through commodity eye tracking as preference clues.
Puolamaki et al. [34] combined eye movements and collab-
orative filtering [38] in proactive information retrieval tasks
which is similar to a recommender and demonstrated its ac-
curacy benefit in predicting whether a document is relevant.
Recommender systems that rely on implicit feedback [25]
could suffer from position bias as well, as demonstrated by
Hofmann et al. [24] in simulated experiments. They ex-
amined this bias using different click models and showed
how bias following these models would affect the outcome
of recommender system offline evaluation based on implicit
feedback data.

Two hypotheses for user gaze behavior in a grid.
In a grid-based layout, it is likely no longer valid to assume
examining results from top to bottom one by one any more,
since there are two potential directions (horizontal and ver-
tical) that users can direct their attention. We have two
hypotheses regarding how users examine a grid: F-pattern
[11] and center effect [40]. As pointed out by Tatler [40],
observers have a tendency to fixate the center of the screen
on computer monitors. They demonstrated the endurance
of the central fixation bias irrespective of the distribution of
image features, which implies that the center of a screen may
be an optimal location for early information processing as
learned by users. On contrary, because that a grid with rows
and columns are different from an integral scene picture, the
visual hierarchy might dominate the viewing behavior and
users could exhibit a viewing pattern favoring the top and
left sides [11], as suggested by the shape F going from top
to bottom and left to right.

3. BUILDING MODELS FOR THE
GAZE PREDICTION PROBLEM

We define a specific type of gaze prediction problem here
– Aggregated Fixation Prediction. Fixation refers to
the stationary period between saccades [16], in other words,
the maintaining of visual gaze on the same location (we fo-
cus on predicting fixation here because in most human visual
activities, we reply on fixations to take in visual information
[16]). Consider a user browsing a page in a grid layout (ex-
amples shown in Figure 1), which has r rows and c columns
and r ∗ c items in total. The problem is to predict fixation
probability, i.e., whether the user has fixated, and fixa-
tion time, i.e., how long the user has fixated, on each of

Figure 2: Graphical representation of a HMM in
which F denotes fixation variable and A denotes ac-
tion variable. α, T and E are parameters represent-
ing categorical conditional distributions defining the
HMM. N is the length of the HMM sequence. For
the gaze prediction problem, HMM gives inferred
probability distributions of F when the values of A
are observed.

the r ∗ c items aggregating the entire browsing of the user
on the page, given item positions, the user’s dwell time
on the page and the user’s actions (e.g. rating, clicking
or wishlisting) on some of the items. Note that the unit of
prediction is for each displayed item in one page view.

3.1 Building Linear Models
We start with linear models to predict users’ fixation.

With access to a group of users’ fixation data, we can build
supervised machine learning models to predict future fixa-
tions for this group of users and even for other users.

For predicting fixation probability, we build a mixed-effect
logistic regression model (taking into account the correlation
among positions by using a random intercept for each page
view) using the following three groups of features:

• Position features: row index, ranging from 1 to r, and
column index, ranging from 1 to c;

• Dwell time: log transformed seconds spent on a page;

• 1/minActionDist : the inverse of the minimum distance
to actions on a page. This feature encodes the in-
sight that users are more likely to fixate on surround-
ing items when they interact with an item on a page.
For example, if a user acts upon (e.g. clicks) the sec-
ond position, then it is likely that the user has fixated
on the first or third position, which are small in terms
of Euclidean distance calculated with row index and
column index as the coordinates. Since there might be
multiple actions, we take the minimum. We take the
inverse of the minimum distance so that the coefficient
of the feature is positive and the value of the feature
equals zero with no action.

For predicting fixation time, we use the same set of fea-
tures but a different model, a two-stage hurdle linear model [32].
This model handles zero inflation property in training data,
i.e., users have not fixated on many displayed items, by mod-
eling each data point first through a logistic regression and
then through a zero-truncated negative binomial regression.

To simplify result presentation, we refer to linear mod-
els without using 1/minActionDist feature as linearModel



Table 1: Different models for the gaze prediction problem, in which bl denotes baseline, ub denotes training
only on user browsing data (or training without fixation) and et denotes training on eye tracking data (or
training with fixation) as well.

Model
Model descriptions. Some depend on example action sequences a and b
(nonzeros indicate the action position indices and 0 denotes no action)
Action sequence a: 0 0 2 0 4 0 3 0 0 0 0
Action sequence b: 2 0 3 4 0 0 0 2 0 0 0

bl:simpleActionStats (sim-
ple action statistics)

Based on simple action statistics, in which page dwell time is distributed among the
r ∗ c positions proportionate to the frequency of actions on that position from user
action logs. They are used in predicting both fixation probability and fixation time.

ub:exactActionHmm (exact
action approximation)

a does not contribute on the estimation of α, because it starts with no action. b
counts once for initiating from position 2. a does not contribute on the estimation of
T because there is no action transition from a non-zero position to another non-zero
position. b counts once for the transition from position 3 to position 4.

ub:truncActionHmm (trun-
cated action approximation)

After removing zeros, a will count for initiating from position 2 and transition from
2 to 4 and from 4 to 3 even though that is not exactly what have happened.

ub:RestExactActionHmm Re-estimating using Expectation Maximization (EM, [10]) algorithm with exactAc-
tionHmm as initial values.

ub:RestTruncActionHmm Re-estimating using EM algorithm with truncActionHmm as initial values.
et:linearModel logistic regression model for predicting fixation probability or hurdle linear model for

predicting fixation time; 1/minActionDist feature is not used
et:linearModelActionDist same as above except that 1/minActionDist feature is used
et:eyeTrackingHmm α, T and E are estimated by Maximum Likelihood Estimation.

and models using 1/minActionDist feature as linearMod-
elActionDist which are also summarized in Table 1.

3.2 Building Hidden Markov Models
We also use Hidden Markov Models, HMM for short, to

predict users’ fixation, as shown in Figure 2. For each page
view, the dwell time is partitioned into small pieces of con-
stant time intervals (the length of the interval is a parameter
to tune). Each interval is associated with two variables: fix-
ation F and action A. F takes r∗c possible values, represent-
ing the positions a user might fixate on the grid-based inter-
face. We did not model no fixation (which could result from
users’ looking away or eye tracker’s loss of gaze data. Time
intervals with no fixation are removed from the observed F
sequence) because it is less relevant for the prediction tasks.
Given F , A can take r ∗ c+ 1 possible values, i.e. one of the
r∗c positions that a user acts upon plus the possibility of no
action upon any position (we did not differentiate different
types of actions). If multiple fixations are present in one time
interval, we pick the one with longer fixation duration. If
multiple actions are present (which rarely happens for small
time intervals), we shift later actions to the following time
intervals for which there is no action present or otherwise
only use the first action. The parameters of this HMM are
same for all users, i.e. the HMM is not personalized:

• initiation vector α (length of r ∗ c) represents the
categorical probability distribution of the initial fixa-
tion.

• transition matrix T (size of r ∗ c by r ∗ c) represents
the categorical transition probabilities from previous
fixation to the next.

• emission matrix E (size of r∗c by r∗c+1) represents
the categorical action probabilities given the current
fixation position.

With fixation data from some users’ page views (using eye
tracking), we can estimate the above parameters by maxi-
mizing the likelihood of observing both the fixations and
actions. We refer to this model as eyetrackingHmm (sum-
marized in Table 1 as well).

Without fixation data, we can still estimate the above
parameters with observed actions as follows. Firstly, we
estimate E with one assumption – users usually do not act
upon items they are not fixating on. Therefore, We set small
probability values (specifically, 10e−6 in our algorithms) in
E where positions of actions are different from positions of
fixation. For the other case, we estimate the probability of
acting upon f given that F = f from frequency of actions on
f in users’ action logs. Secondly, we estimate α and T , by
treating observed action as fixation, with the four algorithms
named starting with ub: in Table 1.

Predicting based on HMM relies on the inferred respon-
sibility parameters, i.e. posterior distribution P (Fi|A), de-
noted by a matrix R (N by r ∗ c), in which N is the length
of the HMM sequence. Si defined in Equation 1 is com-
puted for predicting fixation probability and Li defined in
Equation 2 is computed for predicting fixation time. The
rationale behind these formulas lies in that P (Fi|A) tells
how much responsibility fixating on a position takes for the
observed action sequence.

Si =

N∑
j=0

Rj,i, for i = 1 to r ∗ c (1)

Li = DwellT ime ∗ Si∑r∗c
k=1 Sk

, for i = 1 to r ∗ c (2)

4. METHODS

4.1 MovieLens and User Browsing Dataset
MovieLens (https://movielens.org) is a public online movie

recommender service maintained by GroupLens Research at



the University of Minnesota. We focus on an interface called
the explore page (which refers to a page with explore in its
URL). It is a paginated three-rows-by-eight-columns grid-
based layout presenting movie recommendations. Most of
the explore page views are completely filled with 24(= 3∗8)
movie cards, as shown in Figure 1 (bottom-right). On each
explore page, users can click a presented movie card, leaving
the explore page and going to a movie detail page for that
movie’s details. Users can also rate or wishlist movies in
a five-star-rating or wishlisting widget without leaving the
explore page.

We use a dataset with one month of user browsing data
from November 2015. For our purposes, we track page dwell
time and ratings, clicks and wishlistings on movie cards.
When a user leaves the explore page by clicking a movie
card and directly returns, we count it as a continuing page
view of that explore page, rather than a fresh new page view,
so the dwell time accumulates through interruptions such as
movie detail page views. In total, this data set has 102,039
page views with associated dwell times.

4.2 Eye Tracking Protocol Design and Dataset
We collected 17 subjects’ gaze data using Tobii T60 Eye

Tracker (0.5 degree accuracy, 60 Hz data rate, 17” screen
size, 1,280x1024 resolution, roughly 65 cm viewing distance).
These subjects are university students, including twelve males
and five females, aging from 18 to 25 and majoring across
eight disciplines. Subjects reported that they had watched
five or more movies in the past two months with two excep-
tions: one had watched two movies and another had watched
three. They had never used MovieLens before. We set up
an account for each subject and asked them to perform the
five tasks listed below which takes around 30 minutes after
the eye tracker calibration procedure.

• Task 1: Browsing for fun (five minutes). This is for
the subjects to get to know MovieLens features and
obtain natural gaze and browsing behavior.

• Task 2: Rate 15 movies. Subjects were instructed to
rate based on their preference on movies in a five-star
rating widget.

• Task 3: Find 10 movies you’d like to watch given a
three-month holiday. Subjects were asked to add those
movies into their wishlist using the wishlisting feature.

• Task 4: Find 5 movies you’d like to recommend to your
friends.

• Task 5: Find 5 movies you’d like to recommend to a
12 years’ old child.

We directly used the fixation records generated by Tobii
Eye Tracker (see its manual for details of the algorithms to
compute fixation from raw gaze1). Each record has fixation
duration and screen coordinates. To obtain fixations on the
displayed movie cards, we recorded the movie card position
coordinates, and tracked scrolling events as well to count for
the position change. These positions are programmatically
matched with the eye tracker’s fixation records. Aggregating
all 17 subjects, we collected 452 qualified page views (i.e.
views of explore page completely filled with 24 movie cards.).

1http://www.acuity-ets.com/downloads/Tobii%20Studio%
203.3%20User%20Guide.pdf

Since the unit of prediction is with respect to each movie
card display, we have 10,848(= 24 ∗ 452) data points to use
(Among them, we have 2304 for Task 1, 2760 for Task 2,
3960 for Task 3, 552 for Task 4 and 1008 for Task 5).

4.3 Evaluation
For each of the 17 subjects in the eye tracking study, we

have their true fixations on each movie card in a page
view, which is the target variable to predict. Prediction
accuracy is measured with AUC (Area Under the ROC)
for predicting fixation probability, i.e. to classify a displayed
movie in a page view into being fixated or not and MAE
(Mean Absolute Error) for predicting fixation time. The
unit of MAE is in seconds.

Depending on whether using true fixation data or not
to train models, the evaluation has two scenarios. In the
training-with-fixation scenario, both fixation and brows-
ing data from the 17 subjects in lab settings are used. We
randomly pick 4 (around 20%) subjects and use their data
for testing, while reserving the other subjects for training.
This procedure is conducted multiple times (around 100
runs; a different set of subjects are picked each time) to
compute variance of the metrics. In the training-without-
fixation scenario, as its name suggests, only user brows-
ing data is used for training, including both the one month
dataset and user browsing data from the 17 subjects in lab
settings. In order to be able to compare the accuracy be-
tween these two scenarios, testing phase of this scenario uses
the exact same fixation data as the previous scenario.

5. RESULTS
RQ1: How accurately can we predict gaze on items in

a grid-based interface? Figures 3 and 4 illustrate the ac-
curacy of predicting fixation based on models trained with
only user browsing data (the bottom five boxplots) and with
eye tracking data (the top three boxplots). First of all, we
see that there is a significant accuracy boost resulting from
training on eye tracking data even though the training and
testing users are different. Specifically, AUC increases from
0.693 for exactActionHmm to 0.823 for eyeTrackingHmm
(p ≈ 0) and MAE decreases from 0.466 for simpleAction-
Stats to 0.332 for linearModelActionDist (p ≈ 0). This result
demonstrates that gaze patterns are consistent even across
different users, and that our models capture these patterns
very well.

In the training-with-fixation scenario, eyetrackingHMM per-
forms significantly better than linearModelActionDist in pre-
dicting fixation probability (AUC = 0.823 vs. 0.757; p ≈
0). However, it performs worse in predicting fixation time
(MAE = 0.520 vs. 0.332; p ≈ 0). In the training-without-
fixation scenario, exactActionHmm is much better than sim-
pleActionStats (AUC = 0.693 vs. 0.580; p ≈ 0) in pre-
dicting fixation probability (For an intuitive interpretation,
Figure 5 shows the ROCs for one run of the evaluation pro-
cedure). But similarly, it has worse MAE (0.520 vs. 0.466;
p ≈ 0) in predicting fixation time. RestExactActionHmm
and RestTruncActionHmm do not improve, which might be
explained by overfitting to the action data set.

The above results show that HMM is more effective in cap-
turing the interface regularity through Markov matrices and
Bayesian inference in predicting binary-valued fixation vs.
no-fixation, but is not very good at predicting real-valued
fixation time. It might be explained by the choice of par-
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tition granularity in HMM, since we have to decide on a
time interval. We are using one second for all HMMs af-
ter exploring multiple choices. It might illustrate a general
difficulty of a generative modeling approach such as HMMs
compared with a discriminative modeling approach such as
hurdle linear models, in which fewer assumptions have to be
made. Actually, hurdle linear models have better accuracy
than ordinary linear regression, poisson or negative binomial
regression and random forest with the same set of features.
Note that MAEs less than a second do not imply that pre-
dicting fixation time is an easy task. It could possibly result
from the small range of the ground truth values, especially
with many zeros. Instead, we found that it is hard to pre-
dict fixation time since with the best model we have, the
prediction R2(coefficient of determination) is 0.21. In other
words, our model explains 21% of the variance in fixation
time.

RQ2: How is gaze distributed on different positions in a
grid-based interface? Figure 6 (drawn based on the mixed-
effect logistic regression model; no significant interaction ef-
fects) illustrates user gaze behavior in a grid. It supports the
F-pattern hypothesis, instead of center effect. Note that the
fixation probability between either the first row and second
row or the first column and second column is not signifi-
cantly different. However, both the third row and third col-
umn have a significant drop (p ≈ 0). Particularly, we omit
the last column (index 7) because of data collection prob-
lem. The Tobbi eye tracker has relatively smaller screen
size which leaves part of the movie card in the last column
out of view. This however does not affect the conclusion
for this research question. More interestingly, we found that
for all positions dwell time is positively associated with fix-
ation probability and when reaching 60 seconds, different
positions on average have a very high probability (> 0.80)
of being fixated.

RQ3: How does gaze prediction accuracy vary for different
tasks or modes of usage? From Figure 7, we see that Task
3 – finding ten movies for self – has the best accuracy in
predicting fixation probability (AUC = 0.842, p ≈ 0). Since
more data is collected for Task 3, it partially explains the
accuracy advantage. Another possible explanation is that
the process postulated by HMM particularly fits better to
subjects’ gaze behavior when engaging in this task. On con-
trary, as shown in Figure 8, the accuracy suffers most in

Figure 3: AUC boxplots for different models in pre-
dicting fixation probability. Higher scores are bet-
ter. See Table 1 for descriptions of the models.

Figure 4: MAE boxplots for different models in pre-
dicting fixation time. Lower scores are better. See
Table 1 for descriptions of the models.

Figure 5: ROCs in classifying displayed movie cards
into being fixated or not in a page view. It is from
one run of the evaluation procedure.

Figure 6: Fitted probabilities for different positions
and the effects plot of position feature and dwell time
in predicting whether a displayed movie is fixated
using logistic regression. No significant interaction
is found.



Figure 7: AUC boxplots of the best model
et:eyeTrackingHmm in predicting fixation probabil-
ity for the different tasks.

predicting fixation time for the finding-movies-for-children
task (MAE = 0.340, p = 2.92e− 08). Subjects’ gaze behav-
ior shows substantial difference in this task from the video-
recorded eye movements. Their fixations are shorter and
more scattered, probably because subjects’ searching strat-
egy changed to coarser-level information scanning since most
of the displayed items are not relevant anymore. Note that
the better accuracy (p ≈ 0) for Task 4 might just result from
low variance in the data because we may not have enough
data points for it. The general conclusion is that user gaze
behavior is different in different usage modes and collecting
and training on a specific task is better, especially for sys-
tem designers who have knowledge about the main task that
their users are engaged in.

6. FUTURE WORK
Our gaze prediction techniques imply two direct practical

applications in recommender systems. First, they could be
used to improve recommendation freshness. We can predict
which items the user has paid attention to repeatedly with-
out action, and replace those items with new recommenda-
tions. Second, they could be used to remove potential posi-
tion bias in preference modeling with implicit feedback [24].
We have tried to directly use the predicted fixation prob-
ability to weigh the click-through observations in a matrix
factorization model and achieved some accuracy improve-
ment in predicting clicks under certain conditions. It does
not always work because position bias is usually confounded
with the typical relevance or preference of items shown at
that position [7]. It is not straightforward to disentangle
those confounding factors. A unified model on both gaze
and preference may be necessary instead of simple weight-
ing.

We envision two kinds of extensions to HMMs used in
this work. First, it is possible to consider individual-level, in
addition to current global modeling if a user has enough page
views. Second, the fixation duration on a position is modeled
implicitly through state self-transitioning, which essentially
assumes that the duration follows a geometric distribution
[35]. This assumption may not be valid especially when
more factors are introduced such as preferences to explain
fixation duration. Hidden Semi-Markov Models (HSMM)
have been proposed to account for it and successfully applied
in speech recognition [15]. Applying HSMM in our setting
is a promising future direction.

Figure 8: MAE boxplots of the best model
et:linearModelActionDist in predicting fixation time
for the different tasks.

7. CONCLUSION AND CONTRIBUTION
We conduct initial research on modeling and predicting

gaze in recommender systems with a grid-based interface.
We apply HMM in this setting and achieve significant ac-
curacy improvement in predicting fixation probability. We
also show that incorporating eye tracking data from a small
number of users into the model training significantly boosts
accuracy compared with only using normally logged user
browsing data, even though the eye-tracked users are dif-
ferent from testing users. User gaze behavior follows an F-
pattern rather than showing a center effect in a grid-based
interface. In addition, we find that user gaze behavior is
different in different usage modes which suggests that col-
lecting and training on a specific task is better, especially
for system designers who have knowledge about the main
task that their users are engaged in.
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