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ABSTRACT

Temporally, users browse and interact with items in recommender

systems. However, for most systems, the majority of the displayed

items do not elicit any action from users. In other words, the user-

system interaction process includes three aspects: browsing, action,

and inaction. Prior recommender systems literature has focused

more on actions than on browsing or inaction. In this work, we

deployed a ield survey in a live movie recommender system to in-

terpret what inaction means from both the user’s and the system’s

perspective, guided by psychological theories of human decision

making. We further systematically study factors to infer the rea-

sons of user inaction and demonstrate with oline data sets that

this descriptive and predictive inaction model can provide beneits

for recommender systems in terms of both action prediction and

recommendation timing.
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1 INTRODUCTION

Imagine one of your friends asked for a restaurant recommenda-

tion. You told her about a sushi restaurant nearby and she did not

end up going there in the next week. What can we say about her

preferences for restaurants and the reason why she did not go?

And, if she comes for more recommendations after a week, would

you recommend the same restaurant again to her? In the beginning

you might ask her for a reason, but as time goes by, you might be

able to learn that if she crinkled her nose and it was the second
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time you recommended the restaurant, she probably did not like

the recommendation and you’d better stop recommending that one.

On the other hand, if she looked upwards trying to remember and

it was the irst time you recommended, you might want to recom-

mend it again since it’s possible that she was interested but did not

pay enough attention.

This type of scenarios happens similarly in online recommender

systems, where users systematically browse items and decide to do

something or not with the recommendations. In a typical online

recommender interface, e.g., the interface of Netlix, Amazon, or

Youtube, grids or lists of recommendations are displayed to users

once per page view. If users rate or consume (e.g., watch or purchase)

one of the items, the system learns from this explicit evaluative

rating feedback or implicit behavioral action feedback to make

better future recommendations. For example, this feedback can be

incorporated into (contextual) preference models to estimate what

users prefer in general or in that speciic context [1, 17]. However,

among all that have been displayed, the majority of recommenda-

tions do not elicit any actions from users. We refer to this case as

user inaction.

Intuitively, displaying recommendations triggered by user brows-

ing afects user perception and experience with the system, and

this should include both action and inaction. Just as actions provide

feedback about user preferences, so do inactions, and this should be

accounted for in the (contextual) preference models. For instance,

a recommender that keeps recommending the same item again and

again while ignoring user inaction feedback might not engage the

user. On the other hand, a recommender that forgets what has been

shown and keeps changing its recommendations based on user

(in)action feedback could be confusing when the user is not able to

retrieve a previously displayed and interesting recommendation,

which the user has not yet had a chance to further explore.

Prior work in recommender systems has mainly focused on

studying action rather than inaction [14], partially because inaction

data is more ambiguous than action: inaction can (just like action)

represent a deliberate decision, but can also result from insuicient

attention. Moreover, to understand the reasons for inaction, we

need access to real users and their browsing activity data to bet-

ter understand what reasons there are for inaction, and to build

models to predict the type of inaction. With access to a live movie

recommender system, we set out to answer the following research

questions regarding user inaction by deploying a ield survey about

items not acted upon, analyzing and modeling the survey responses

combined with a year of user browsing and interaction logs.

• RQ1: What are the diferent categories of reasons for user

inaction?

https://doi.org/10.1145/3240323.3240366
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• RQ2: How do diferent categories of user inaction afect user

future recommendation preferences for items not acted upon?

• RQ3: How well can we infer or classify the categories of user

inaction from user log data?

• RQ4: Can we improve recommender systems utilizing a user

inaction model based on our earlier indings?

To answer RQ1, we examined several behavioral decision mak-

ing theories (notably, Decision Field Theory by Busemeyer et al. [3]

and the ECHO model by Guo et al. [10]) to come up with seven

major categories of reasons for user inaction to drive our ield sur-

vey design. In answering RQ2, we found that users demonstrated

signiicantly diferent preferences regarding the future recommen-

dation of inaction items that belong to diferent inaction categories.

We then moved to RQ3, for which we investigated factors from

user log data that might be predictive for inferring the category

or class of the inaction recommendation. Among the signiicantly

predictive factors, we observe some interesting but intuitive efects

on the inaction class probabilities that we can infer. Finally, we have

some evidence for RQ4, showing that taking into account the best

inaction model’s output, we can improve user action prediction and

potentially the timing of the recommendation. For example, if the

model predicts, for a previously displayed inaction recommenda-

tion, that there is a high probability that the user is interested in

it in the future but not now, we can delay this recommendation to

the next session.

Together our results show that user inaction is important to

understand before making decisions on the future recommendation

strategies of previously displayed items. The categories of user

inaction can to some extend be inferred from user log data which

can be further used to improve recommendations. In what follows

we will irst discuss related work, before discussing in detail the

methods we used to answer our four research questions.

2 RELATED WORK

Collaborative iltering algorithms e.g., matrix factorization tech-

niques [17] have been applied on user implicit feedback data, for

instance, by treating the values of the observed acted-upon (e.g.,

purchased, watched) items of a user as ones or positives while

other unobserved items as zeros or negatives [14]. These values are,

however, associated with uncertainty scores to represent that those

feedbacks are not explicitly given by users and hence inherently

uncertain.

Yang et al. [25] proposed the model of collaborative competitive

iltering to relect the fact that users make a decision of picking and

acting on one item taking into account the competition of other

context items displayed together. Lee et al. [18] studied how to

estimate and utilize discounting functions of previous impressions

(displays) to improve the conversion rate of recommendations, i.e.,

based on how many times an item had been displayed and the

last time the item was displayed to weight (downwards in the

work because of the hypothesis that inaction tends to be negative

feedback) the normal recommendation score of the item. This is

similar to the cycling approach proposed by Zhao et al. [26] where

the more exposed items are cycled to the bottom of the top-N

list. They demonstrated an efect of increased user engagement,

although they also observed negatively afected subjective user

perception because of this manipulation.

In information retrieval (IR), Joachims et al. [15] examined the

reliability of click-through feedback data using eye tracking and

explicit relevance judgment. They concluded that clicks are infor-

mative but sufer from a position bias, because of the search results’

presentation in a list layout. Following these indings, various user

attention and browsing models are proposed to account for the bias

in learning algorithms [5ś7, 23] for CTR estimation in IR. Recom-

mender systems that rely on implicit feedback [14] could sufer from

position bias as well, as demonstrated by Hofmann et al. [13] in

simulated experiments. The user browsing model could be substan-

tially diferent for recommender systems compared with IR because

modern recommender interfaces are typically grid-based [27].

Decision making researchers have developed normative and be-

havioral theories to explain human decision making processes [8].

Human behavioral decision making has two fundamental proper-

ties: determinism vs. probabilism (variability of preferences), statics

versus dynamics (preference strength and deliberation time) [3].

Decision ield theory (DFT) [2, 3] is a theory that takes into account

variability of preferences using a dynamic computational model

which has been shown to account for many prominent behavioral

decision phenomena, such as context efects in which an additional

third alternative inluences the relative preference of two other

alternatives. The theory postulates a temporal comparative mental

decision process of people when faced with several options and the

accumulative preference of each option (called valence) dynamically

changes while the decision maker is paying attention to diferent

aspects of the options that are important for the decision. Once the

valence reaches certain threshold, a decision will be made, i.e., it is

observed that one of the options is chosen. DFT provides a frame-

work for us to formalize the attentional and competitive factors

that might afect user behaviors seeing a page of recommendations.

Other similar theories, such as the ECHOmodel [10], extend this

work with a special contributing factor, called the external driver,

representing the goal to make a decision. It suggests that context,

tasks, and goals inluence attentional processes in a dynamic way

while users are browsing a page of recommendations. What users

attend to (or not) relects how they compare between options and

part of the mental decision processes. In other words, action and

inaction tells us more about the underlying preferences and might

allow to improve recommendations when modeled and taken into

account.

Recommender systems can be evaluated with oline metrics

and online experiments. Widely used oline metrics [11] include

Precision, Recall, Mean Average Precision (MAP), Area Under the

ROC Curve (AUC), Mean Average Error (MAE), and Root Mean

Squared Error (RMSE). Unfortunately, these oline metrics have

to make assumptions about online environments, e.g., assuming

recommendation is a static ranking task to best recover or predict

what users do in a held-out (future) part of the observed data sets.

These metrics are limited because, e.g., they cannot capture the

dynamic interactive nature of how a recommender system is being

perceived and used by people, like browsing page by page, going

back and forth to compare or get more information to make deci-

sions. As pointed out by McNee et al. [19], oline recommendation
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accuracy on its own often is not a suicient indicator of recom-

mendation quality, and further work by Knijnenburg et al. [16] and

Pu et al. [20] proposed user-centric frameworks and evaluation

metrics to answer a rich set of questions around user experience in

recommender systems.

Inspired by the theories of behavioral decision making and fol-

lowing the user-centric approach, we set out to interpret user inac-

tion in recommender systems from the perspective of understand-

ing and improving user experience.

3 RESEARCH PLATFORM

We conducted our research on a live movie recommender system

MovieLens (https://movielens.org). MovieLens is a movie informa-

tion site in which users can browse movie information and get

personalized movie recommendations. It has thousands of active

users every month. In the front (or home) page of MovieLens, there

are several sections displaying movies according to diferent crite-

ria (e.g., recent releases, most popular etc.). The top irst section is

top-picks, i.e., according to the criteria of recommendation scores

generated by recommendation algorithms. This section has eight

movie cards horizontally displayed in standard PC screens (i.e., one

row with eight columns). Users can click a "see more" link besides

the section to see more top picks in explore pages. Each explore

page is organized in a three-by-eight grid (i.e., 24 movie cards) and

users can browse them page by page.

Each movie card enables three major features: rating, clicking,

and adding into the wishlist. Users can enter ratings through a

ive-star rating widget (half-star increments) under the movie card

to tell the system his or her preference for the movie (this can help

the system make better future recommendations). Users can click a

movie card and transition to a page with its detailed information

(e.g., the plot, cast, trailers). If a user wants to collect the movie for

later watching, he or she can add the movie into a personal wishlist

by clicking on a button in the movie card.

4 DATA COLLECTION

In order to collect survey data on user inaction, we summarized

seven major categories of reasons for user inaction according to

the postulated temporal decision making process from Decision

Field Theory (DFT), [2], adapted to better it the speciic domain of

the system.

People normally do not watch most movies multiple times, i.e.,

the re-consumption of movies could greatly afect whether users

interact with a movie recommendation or not. Some domains, how-

ever, see frequent re-consumption, e.g., online grocery stores or

music streaming services. From another perspective, whether a

user has watched (or consumed) the movie before suggests that the

user has a certain (highest especially right after the consumption)

level of familiarity. A potentially important factor that contributes

user inaction is lack of attention, as suggested by Zhao et al. ’s

eye tracking work [27] on grid-based interfaces (our survey in this

work also supports this observation).

When a number of recommendations are displayed in one page

view, users probably will not pay attention to all of them especially

when the item is displayed in a non-prominent position, e.g., the

right bottom corner in a grid-based interface [27]. Even if a user does

pay attention to an item, the user might prefer other alternatives

that are displayed together or the user needs more information

about the item to make a decision or just to ind out whether it is

actually less preferred compared with others. It could also be that

the recommendation does not it the user’s movie taste, or that the

user is looking for movies to watch with others so that additional

constraints must be met. These scenarios relect the efect of context

described by the ECHO model [10].

We designed our ield survey to be dynamically adaptive with

multiple steps of questions for users to answer. Since our inaction

interpretation derives from decision making processes, we excluded

scenarios where users are not obviously making decisions based

on the recommendations, e.g., rating a previously watched movie

or just browsing movie information. In addition, depending on pre-

vious answers to some of our survey questions, certain questions

may not make sense. For example, if a user did not notice a recom-

mendation, it would not be a valid follow-up question to ask why

the user did not interact with it.

When a user goes to the explore page with 24 top picks and then

transitions away from that page, we randomly picked one movie

that was displayed on that page but not acted upon by the user

(action includes rating, clicking, and adding into the wishlist, but

excludes mouse hovering). If conditions to survey the user were

satisied (the user was asked fewer than four times before, and

the time of last asking was more than one week ago), a survey

was popped up to ask the user the following questions organized

according to the low shown in Figure 1. The order of the options

to each question was randomly lipped (excluding the free text box)

to avoid position bias. The short names in the parentheses were

not displayed but are included here for reference purposes. They

also represent how multiple options are sometimes merged to make

it easier for modeling, prediction and analysis (i.e., NotNoticed

in "notice", PastMonth/PastYear/YearsAgo in "when", Maybe in

"future"). Users have the option of checking "don’t ask me again"

which has an associated message: "if you are under 18 years old,

please check this option and dismiss the survey". This study was

approved by the Institutional Review Board at the University of

Minnesota.

• What was the primary reason you came to the MovieLens

Top Picks today?(reason)

ś to ind a movie to watch now or soon, probably by myself

(FindForSelf)

ś to ind a movie to watch now or soon, probably with

someone else (FindWithOthers)

ś to build a list of movies to watch in the future (BuildList)

ś to browse movies without any speciic plan to watch any

of them in the near future (JustBrowse)

ś to indmovies I’ve already seen to rate them (RateWatched)

ś other (free text) (FreeText)

• Did you happen to notice whether we displayed a movie

recommendation XXX (1993) in the previous Top Picks page?

(notice)

ś Yes, I noticed it (Noticed)

ś No, I didn’t notice this movie being recommended (Not-

Noticed)
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reason
N=5665

end

RateWatched (11.2%)
JustBrowse (7.8%)
Other (1.5%)

Watched (23.1%)

Noticed

FindForSelf (36.6%)
FindWithOthers (21.0%)
BuildList (21.6%)

NotNoticed

end

Noticed (60.7%)
NotNoticed (39.3%)

notice
N=4120

NeverHeardOf (29.2%)
HeardOf (13.4%)
SomeWhatFamiliar (20.6%)
VeryFamiliar (13.8%)

skip
N=1808

when
N=885

future
N=3715

PastMonth (2.8%)
PastYear (11.7%)
YearsAgo (73.1%)
DidNotRemember (12.3%)

WouldNotEnjoy (12.6%)
OthersBetter (20.4%)
NotNow (39.1%)
ExploreLater (14.6%)
DecidedToWatch 
(12.5%)
Other (0.4%)

familiarity
N=3945inaction

Figure 1: The low of the inaction survey illustrating how

the questions were asked. N is the number of responses to

the corresponding question. The ratios are the proportions

of options within those response.

ś I don’t think it was displayed, but I would have noticed it

(NotNoticed)

• How familiar are you with this movie XXX(1933)? (familiar-

ity)

ś Never heard of it (NeverHeardOf)

ś Heard of its name but don’t knowwhat it’s about (HeardOf)

ś Somewhat familiar with it but have not watched it (Some-

WhatFamiliar)

ś Very familiar with it but have not watched it (VeryFamil-

iar)

ś I’ve watched it (Watched)

• When did you watch this movie XXX(1933) last time? (when)

ś Past week (PastMonth)

ś Past month (PastMonth)

ś 1-6 months (PastYear)

ś 6-12 months (PastYear)

ś 1-3 years (YearsAgo)

ś > 3 years ago (YearsAgo)

ś Don’t remember (DidNotRemember)

• We noticed that you didn’t interact with the card for movie

XXXX (i.e., you didn’t wishlist, or click to see details)?Which

best describes the reason why you didn’t? (skip)

ś I already decided that I might watch it. (DecidedToWatch)

ś I was planning to click on this movie to explore it later; I

just hadn’t done so yet. (ExploreLater)

ś There were other movies recommended that seemed more

interesting to me at the moment. (OthersBetter)

ś While I might be interested in this movie in the future, it

isn’t what I’m looking for right now. (NotNow)

ś I’m pretty sure I wouldn’t enjoy this movie. (WouldNotEn-

joy)

ś Other (free text) (FreeText)

• Should MovieLens continue recommending this movie to

you in the future (until you rate it, of course)? (future)

ś Yes, deinitely (Deinitely)

ś Sometimes, but not always (Maybe)

ś Not now, but it would be nice to see it recommended again

after some weeks or months (Maybe)

ś No, I’d rather get other recommendations (RatherNot)

From the survey question design, the seven possible categories

of user inaction are labeled as NotNoticed, WouldNotEnjoy, NotNow,

OthersBetter, ExploreLater, DecidedToWatch, Watched, which inte-

grates the questions of "notice", "familiarity" and "skip" (note that

Watched here only includes those inaction items that are Noticed).

We launched the survey on July 28, 2017 and collected user re-

sponses until March 21, 2018. 3,206 users gave 3,923 responses for

which the user inaction category can be determined.

Along with the survey data, we also have user interaction logs in

the system from Jan. 1, 2017 to March 21, 2018. These include 53M

movie displays browsed by 25K users with information regarding

how they were displayed (e.g., position in the interface and how

long the page dwell time was etc.), 1.6M ratings, 369K clicks, 167K

wishlist additions, 2.8M hovers (hovering is only logged when the

accumulative hovering time on the movie card is longer than one

second within the page view) by those users.

5 INTERPRETING USER INACTION

RQ1: What are the diferent categories of reasons for user inaction?

Figure 1 illustrates the distribution of user responses to the sur-

vey questions. If we only consider responses in the seven inaction

categories from the igure, we found that 38.6% of inaction rec-

ommendations were because of lacking attention (NotNoticed).

18.2% were because of lacking the right context (NotNow). 14.6%

had already been consumed by the users (Watched), which were

still recommended by the system because of lacking consumption

records of the users. 9.5% were because of the efects of competition

(OthersBetter). 5.8% did not match the user’s taste (WouldNotEn-

joy). 6.9% needed exploration later for more information to make a

decision (ExploreLater). 5.8% had already reached the user’s accep-

tance decision (DecidedToWatch) after that page view although it

is an inaction recommendation. Lastly, outside of the options we

provided for the "skip" question, we had 0.25% free-text responses.

These numbers suggest that simply treating inaction as a signal of

negative feedback (or simply ignoring the inaction feedback) could

be problematic. Particularly, it points out that the efects of the two

most important inaction factors ś attention and context ś need

to be incorporated into the design of recommender models or the

presentation of top-N recommendations.

6 FUTURE RECOMMENDATION

In this section, we answer "RQ2: How do diferent categories of user in-

action afect user future recommendation preference?" to demonstrate

the signiicance of distinguishing diferent categories of user inac-

tion. Figure 2 illustrates the distribution of future recommendation

preferences for diferent user inaction categories. We conducted

pairwise comparisons through six ordinal regression (speciically,
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mixed-efects cumulative link) models, assuming that "future" ques-

tion has three ordinal levels: RatherNot, Maybe, Deinitely (as men-

tioned previously, MaybeLater and Sometimes are merged into one

level: Maybe), treating "inaction" as the ixed efect and user ID as

the random intercept, varying the baseline condition of "inaction".

To control false discovery, we employed Bonferroni correction [12]

(efective signiicance p-value threshold is 0.0083; note the number

of models built is six). The overall conclusion is that future recom-

mendation preference can be statistically and substantially diferent

for diferent inaction categories. Speciically, there is a preferred

order of future recommendation for the seven inaction categories.

From the least to the most preferred in future recommendation, the

order of inaction categories is WouldNotEnjoy <Watched < NotNo-

tice < NotNow or Others Better < ExploreLater or DecidedToWatch.

Note that movies with an inaction reason of DecidedToWatch are

similarly preferred as ExploreLater, and users prefer being recom-

mended inaction movies that they did not notice over ones that

they noticed but had already watched.

As described in the survey design section, we also asked ques-

tions regarding "reason" (speciic contexts), "familiarity", and "when"

to watch. Figure 1 shows that the majority of user visits to the ex-

plore page top-picks are for inding movies to watch, although the

context of inding the movie to watch may not be only for the user

(i.e., with others) or for immediate consumption.

We analyzed how "reason", "familiarity", "when" to watch might

afect users’ future recommendation preference by building similar

ordinal regression models. We found that FindWithOthers has a

signiicant negative efect on future recommendation preference

compared with FindForSelf (coef.=-0.181, std.=0.090, p=0.044). It

suggests that when users come to the recommender to ind a movie

to watch with others, the movies that they browse generally do not

relect their own preference and hence users prefer the system not

to recommend these movies in future. For "familiarity", we found

that Watched has a signiicant negative efect on future recommen-

dation preference compared with not Watched yet (p<0.001) but

we did not see signiicant diferences among the cases from Nev-

erHeardOf to VeryFamiliar. For diferent "when" options, we did

not see signiicant diferences either. However, we observe a trend

that suggests users may be more likely to want to see a watched

movie recommended in future when it was watched in the past

year compared with the one watched either very recently or very

far away in time.

7 CLASSIFYING USER INACTION

The previous section shows that diferent categories of user inaction

signiicantly afect the future recommendation preference of users.

However, we are not able to gather data about user inaction on

each of the displayed recommendations in the system. One possible

alternative is to build classiication models to predict, which is what

our RQ3 is about: How well can we infer or classify the categories

of user inaction? In order to answer this research question, we

temporally split the survey data and system logs into two subsets.

We used the subset of survey data and system logs before Feb. 1,

2018 (i.e., Jan. 1, 2017 to Jan. 31, 2018) as the training data (around

90% of system logs, 80% of survey data). We used the remaining

63%

42%

30%

9%

11%

1%

4%

5%

19%

23%

27%

25%

51%

65%

32%

39%

47%

64%

64%

48%

32%

FutureRecommendation

100 50 0 50 100

WouldNotEnjoy

Watched

NotNoticed

NotNow

OthersBetter

ExploreLater

DecidedToWatch

Percentage

Response RatherNot Maybe Definitely

Figure 2: The distribution of future recommendation pref-

erence for diferent user inaction categories. The order of

preference (signiicant after Bonferroni correction, p<0083)

is WouldNotEnjoy < Watched < NotNotice < NotNow or Oth-

ers Beter < ExploreLater or DecidedToWatch.

subset of survey data and system logs (i.e., Feb. 1, 2018 to Mar. 21,

2018) as the testing or evaluation data.

The problem of inferring the category of user inaction can be

formalized as a 7-class classiication problem. Note that this is not

predicting user inaction before a page of recommendations are

displayed, but is inferring user inaction reason after observing how

a page of recommendations are displayed and interacted with by

the user. This classiication model can be used for recommendation

when we want to know whether we should re-recommend an item

that has been previously displayed to the user before, which will be

described in the last section. For now, we focus on answering RQ3.

We hypothesize that predicting potential actions users might

perform on recommendations might be useful in inferring user

inaction. For instance, estimated probability of displaying (pred-

Display) a movie by the system might signify the probability of

ExploreLater. Estimated user preference (predRating) might signify

the probability of WouldNotEnjoy. Estimated probability of rating

a movie might (predRate) signify the probability of Watched. Esti-

mated probability of clicking a movie (predClick) might signify the

probability of ExploreLater. Lastly, estimated probability of adding

into the wishlist (predWishlist) might signify the probability of

DecidedToWatch. Therefore, we irst built ive models (referred

to as sub-models) to generate these predictions through the clas-

sical matrix factorization technique [17] (latent factor dimension

is 32). These action models (except rating value prediction which

is a regression problem) only have positive items observed (i.e.,

what movies were displayed, rated, clicked or added) for which

we need to sample negative items. For each item that was acted

upon, we randomly sampled 2K items from the whole item space

(≈45K) excluding the acted-upon item after which the classical ma-

trix factorization technique can be applied (rating prediction uses

L2-norm loss while action prediction uses binary logistic loss). The

accuracy of these models is MAE=1.24, RMSE=1.51 for rating value

prediction, Precision@1=0.512, 0.166, 0.018, 0.013 for predicting



RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada Qian Zhao et al.

Table 1: The confusion matrix of the inaction model (rows are the predicted classes and columns are the actual classes) and

the accuracy in terms of AUC for each class (binary classiication of one vs. others using the probabilistic output of the 7-class

classiication model).

Class Watched OthersBetter DecidedToWatch NotNoticed NotNow WouldNotEnjoy ExploreLater AUC

Watched 96 8 4 36 8 7 4 0.799

OthersBetter 0 0 0 0 0 0 0 0.720

DecidedToWatch 0 0 0 0 0 0 0 0.702

NotNoticed 59 29 21 217 80 22 27 0.696

NotNow 4 14 9 10 16 3 4 0.676

WouldNotEnjoy 0 0 0 0 0 0 0 0.621

ExploreLater 0 0 0 0 0 0 0 0.605

Table 2: Coeicients (with standard errors) of predictors from a multinomial regression model predicting the category of

user inaction. They represent the log odd-ratio change with respect to the baseline category NotNoticed. "closest" denotes

the closest item that has an action if there is any action on the page. "row" or "col" denotes the row or column index of the

position in the grid. "Sim" denotes similarity score. "numShow" denotes the total number of displays while "numFrontShow"

denotes the total number of front-page displays. "[action]Ratio" denotes the ratio of items having the corresponding [action].

closetInvDist represents the inverse of the Euclidean distance between the acted-upon item (if there is any) and the inaction

item. Signiicance levels: *p<0.05, **p<0.01, ***p<0.001.

Level Predictor WouldNotEnjoy NotNow OthersBetter ExploreLater DecidedToWatch Watched

item

predWishlist 10.912 (3.455) ** 1.249 (11.793) -0.813 (3.121) -0.052 (1.243) 4.668 (1.751) ** -7.124 (13.426)

predDisplay 3.963 (2.785) 0.058 (7.334) -3.441 (5.578) -5.332 (1.709) ** -1.402 (1.421) 5.773 (7.508)

predRating -0.244 (0.282) 0.069 (0.190) 0.699 (0.267) ** 0.160 (0.290) -0.018 (0.324) 0.238 (0.224)

predClick 0.372 (2.754) 1.974 (18.183) 3.065 (9.895) -2.920 (2.545) -0.945 (2.099) -0.238 (18.831)

predRate 5.197 (2.657) -1.875 (6.307) -5.322 (4.063) -5.501 (1.382) *** -1.602 (1.238) 16.935 (7.122) *

page

row -0.004 (0.133) -0.209 (0.088) * -0.136 (0.110) -0.139 (0.132) -0.320 (0.151) * -0.243 (0.089) **

col -0.174 (0.044) *** -0.154 (0.028) *** -0.081 (0.037) * -0.077 (0.043) -0.051 (0.048) -0.047 (0.031)

dwell 0.180 (0.072) * 0.075 (0.052) 0.099 (0.067) 0.146 (0.074) * 0.217 (0.075) ** 0.206 (0.055) ***

closestCol 0.102 (0.052) * 0.100 (0.035) ** 0.051 (0.044) 0.000 (0.051) 0.064 (0.059) -0.033 (0.037)

closestInvDist 0.002 (0.227) 0.134 (0.148) 0.395 (0.194) * 0.435 (0.220) * -0.035 (0.251) 0.385 (0.156) *

minSim -1.245 (1.117) -1.930 (0.702) ** -1.947 (0.881) * -1.002 (1.091) -2.178 (1.234) 0.663 (0.775)

medianSim -4.272 (3.216) -3.221 (1.976) -4.939 (2.671) -7.648 (3.199) * -4.333 (3.410) -4.025 (2.208)

meanSim 4.425 (4.465) 6.532 (2.692) * 9.196 (3.556) ** 9.030 (4.494) * 6.169 (4.824) 2.532 (3.140)

maxSim -3.073 (1.212) * -1.425 (0.762) -1.923 (0.983) -1.980 (1.158) -1.090 (1.299) -1.002 (0.810)

closestSim 0.621 (0.308) * 0.419 (0.214) 0.182 (0.261) -0.148 (0.321) 0.247 (0.363) 0.015 (0.221)

clickRatio -1.645 (7.072) -12.134 (4.887) * -4.474 (5.853) 1.977 (6.448) -6.812 (8.460) -24.583 (6.879) ***

ratingRatio -0.661 (1.191) 0.418 (0.831) 0.420 (0.984) 0.984 (1.176) -0.508 (1.387) -1.726 (0.800) *

lowRateRatio 6.840 (2.256) ** 3.584 (1.852) 4.497 (2.187) * 1.620 (3.055) 7.191 (3.011) * 4.603 (1.795) *

predRateMin -0.065 (0.408) -1.257 (0.767) -0.533 (1.003) -1.321 (0.369) *** -1.175 (0.241) *** 3.486 (0.795) ***

predRateMean 1.231 (1.495) -1.045 (2.689) -1.831 (2.741) -2.797 (1.072) ** -2.330 (1.017) * 7.225 (2.413) **

predRateMedian 0.714 (1.280) -1.959 (2.379) -1.800 (2.564) -2.668 (0.953) ** -2.436 (0.820) ** 8.059 (2.235) ***

predRatingMin 0.041 (0.214) -0.134 (0.122) 0.124 (0.165) 0.298 (0.230) -0.155 (0.199) 0.463 (0.274)

predRatingMean -0.536 (2.146) 1.168 (1.302) -2.417 (1.612) -2.719 (2.034) 1.620 (2.338) -1.041 (1.951)

predRatingMedian 0.600 (1.788) -0.064 (1.077) 2.860 (1.407) * 2.825 (1.726) -0.138 (1.981) 0.335 (1.511)

predRatingMax -0.368 (0.570) 0.183 (0.317) -0.159 (0.450) -0.057 (0.556) 0.132 (0.551) 0.164 (0.439)

predClickMin -0.055 (0.039) -0.243 (0.100) * 0.049 (0.118) 0.160 (0.043) *** 0.009 (0.034) 0.274 (0.108) *

predClickMean 1.272 (1.049) 1.969 (2.030) 0.688 (1.841) -1.051 (0.743) 0.056 (0.809) 0.377 (1.724)

predClickMedian 0.681 (0.493) -0.006 (1.038) 0.805 (0.894) -0.575 (0.364) -0.140 (0.408) 0.460 (0.912)

predWishlistMin -0.249 (0.060) *** 0.267 (0.129) * 0.006 (0.174) 0.022 (0.058) -0.298 (0.035) *** -0.081 (0.154)

predWishlistMax 4.412 (11.852) 13.995 (7.845) 1.154 (12.143) -5.502 (16.207) -4.041 (18.608) 1.706 (9.528)

predDisplayMin -0.102 (0.096) 0.327 (0.218) -0.692 (0.251) ** -0.066 (0.098) -0.066 (0.101) 1.049 (0.149) ***

predDisplayMean -0.197 (1.200) -0.450 (2.288) -1.284 (2.826) -1.554 (1.067) -1.181 (0.839) 5.458 (2.218) *

predDisplayMedian -0.030 (0.744) -0.145 (1.390) -0.760 (1.675) -1.065 (0.632) -1.519 (0.536) ** 3.016 (1.235) *

predDisplayMax -5.349 (7.038) -6.996 (15.833) -5.690 (18.309) -5.104 (6.797) -2.694 (4.402) 36.050 (16.626) *

session
numFrontShow 0.818 (0.252) ** 0.646 (0.168) *** 0.659 (0.209) ** 0.832 (0.237) *** 0.750 (0.253) ** 0.600 (0.191) **

lowRateRatio 14.226 (6.922) * -6.013 (4.337) -5.836 (5.772) -24.322 (5.887) *** -11.919 (7.467) -2.251 (5.417)

user

length 0.002 (0.023) 0.022 (0.016) 0.001 (0.020) -0.007 (0.023) -0.022 (0.028) -0.047 (0.017) **

numShow 0.203 (0.106) 0.299 (0.066) *** 0.253 (0.088) ** 0.251 (0.100) * 0.567 (0.111) *** -0.079 (0.095)

ratingRatio -17.097 (8.493) * 11.615 (9.645) 2.015 (10.951) 7.201 (5.728) 2.984 (3.826) 2.160 (8.145)

highRateRatio 16.444 (8.744) -12.647 (9.837) -1.533 (11.134) -6.516 (6.038) 1.408 (4.318) -0.257 (8.222)

lowRateRatio -0.556 (9.815) -5.772 (9.532) -0.386 (11.086) 10.145 (6.072) 2.154 (5.632) -2.212 (8.952)

wishlistRatio -5.888 (12.539) 3.325 (6.203) 14.435 (4.925) ** 13.525 (5.520) * 0.213 (11.142) 14.693 (4.442) ***

the probabilities of being displayed, rated, clicked, wishlisted re-

spectively. We see that predicting rating, whether to display or rate

are easier tasks than predicting whether to click or add into the

wishlist in the system.

With the pre-built models, after systematically examining the

factors that are potentially predictive, we summarized the following

list of predictors.

• item level
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ś popularity of the movie, i.e., the number of ratings the

movie has in the system

ś predicted rating, likeliness of displaying, rating, clicking

and adding into the wishlist from the sub-models.

ś position where the item was displayed

• page level

ś user dwell time on the page

ś the ratio of action (used to refer to either clicking, rating

or adding into the wishlist except hovering) and hovering

on the 24 movies (i.e., the number of acted movies divided

by 24)

ś the min, max, median and mean of rating value, action and

displaying probability predictions for the page of movies

ś the closest acted item’s position in the grid, its Euclidean

distance from the inaction movie (inversed), rating value

and action predictions, if there is any action on the page

ś the min, max, median and mean of the similarities of the

other movies displayed together with the inaction movie

(these are cosine similarities computed on the movie la-

tent factor representation from the rating value matrix

factorization model)

• session level

ś the length of the session in seconds and how many movies

were displayed before the page view

ś the ratio of hovering, action on the displayed movies be-

fore the page view

ś how many times the inaction movie has been shown in

the session before the page view (this is further separated

into two types of displays: displays on the front page and

displays on the explore page).

• user level

ś the tenure of the user in the system in seconds and how

many movies were displayed to the user before the page

view

ś the ratio of hovering, action which includes either clicking,

rating or adding into the wishlist except hovering on the

displayed movies before the page view. Rating is further

divided into lowRating(<4.0) vs. highRating(>=4.0).

ś howmany times the inactionmovie has been shown across

sessions in the user history before the page view

The inaction model serves two purposes in this work: 1) un-

derstanding what predictors and how these predictors help infer

the inaction categories and 2) achieving usable accuracy so that

a recommendation algorithm can utilize its output to improve fu-

ture predictions. Therefore, we employed two types of techniques

respectively for these two purposes. First, for the purpose of in-

terpretation, we employed multinomial regression to both test the

signiicance of the predictors and their efects’ signs and sizes. Sec-

ond, to achieve the best classiication accuracy, we used Gradient

Boosted Decision Tree (GBDT, boosted ensemble of decision trees)

model [9] and the popular implementation: xgboost [4]. This imple-

mentation supports sparsity regularization (similar to the technique

of LASSO [24]) which enables automatic feature selection by tuning

the regularization strength parameter α . After tuning, we found

the best parameter set to be:max_depth = 1 (the maximum depth

of each tree), num_trees = 51 (total number of boosted trees),

α = 5.0 (L1-norm based sparsity regularization), λ = 1.0 (L2-norm

based regularization). The best model accuracy (7-class classiica-

tion accuracy) is 48.5%, which is signiicantly better (8.6% accuracy

boost) than the naive baseline of always predicting the majority

class (p=0.0001 based on exact binomial test; the number of testing

survey responses is 678; the majority class NotNoticed occupies

39.9%).

Table 1 shows the confusion matrix and the accuracy in terms

of AUC for each class (binary classiication of one vs. others using

the output of the best 7-class classiication model) of the inaction

model. It shows that the model is struggling in diferentiating other

classes from the majority class NotNoticed. However, the probabil-

ity scores predicted by the model still have certain capabilities to

diferent each class from others as suggested by the AUC metric,

speciically the model performs best in predicting for the classes

of Watched, OthersBetter, DecidedToWatch but performs worst for

the classes of ExploreLater, WouldNotEnjoy. Generally, inferring

inaction categories is a hard task.

Because of the use of the sparsity regularization, GBDT model

can provide non-zero-importance predictors after regularization.

The efects of non-zero-importance predictors on inaction inference

(from one multinomial regression model for interpretability) are

listed in Table 2. Note that the coeicients in Table 2 are the log

odd-ratio change of the corresponding category compared with

NotNoticed. To illustrate, we present two examples:

• The higher predicted probability of a user to rate a movie,

the more likely that the user has watched the movie before.

It suggests that predicting whether an item will be rated by

a user in the system can approximate the user’s familiarity

on the item. (the cell in predRate & Watched)

• The higher the predWishlist is, the more likely the reason

for inaction is DecidedToWatch. It suggests that predicting

whether a movie will be added into the wishlist by a user in

the system can approximate the likeliness of a user deciding

to watch the movie, which is consistent with the design goal

of the wishlist feature of the system.

As shown in Table 2, the predicted action probabilities can be

useful signals in inferring the reasons of inaction for displayed

recommendations. Although the possible actions that users can

do in diferent systems vary, we see many interfaces in modern

recommender systems such as Netlix, Youtube support similar

actions as rating, clicking or adding into a wishlist. Therefore, these

indings could potentially generalize across multiple platforms.

However, future research is necessary to further validate this.

8 IMPROVE RECOMMENDATION

In this section, we answer RQ4: Can we improve recommender sys-

tems utilizing the user inaction model? There are three possible ways

of utilizing the inaction model to improve recommender systems.

• Preference estimation. Can we improve rating prediction

accuracy by utilizing the inaction model output?

• Action prediction. Can we improve action prediction accu-

racy by utilizing the inaction model output?

• Recommendation timing. Can we do better in terms of when

to recommend by utilizing the predicted probabilities of

NotNow from the inaction model?
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Table 3: Three possible ways to utilize the user inaction

model in recommender systems. MF denotes Matrix Factor-

ization and FM denotes Factorization Machine.

Goal Model Metric

Rating prediction

(regression,

L2-norm loss)

MF: user ID + item ID
MAE=0.912

RMSE=1.11

FM: user ID + item ID

+ (7-class predicted

probabilities)

MAE=0.950

RMSE=1.17

Action prediction

(whether action or

not when displayed;

binary classiication,

logistic loss)

MF: user ID + item ID AUC=0.774

FM:

user ID + item ID

+ (7-class predicted

probabilities)

AUC=0.787

Recommendation

timing

predicted NotNow

probability vs. time

taken for action

Pearson=0.0264

p<0.001***

predicted NotNow

probability vs. whether

acted in a diferent

session

AUC=0.562

We use similar training and testing data sets as previous sections

to answer these questions. However, we only took part of the system

logs because it is expensive to extract predicted inaction category

probabilities for all the 53M movie displays. To put these models

into real systems requires amortizing the computational costs of

running the additional models. For each of the 25K users, we take

ten page views and their user interactions before Feb. 01, 2018 as the

training set (176K ratings, 4.4M movie displays) and take one page

view and their interactions on and after Feb. 01, 2018 as the testing

set (7K ratings, 135K movie displays). Table 3 shows the results

of testing the three possible ways of utilizing user inaction model

output. The rationale of these approaches is that if we want to

know whether or when we should recommend an item to a user, we

irst check whether we have displayed this item to the user before

and generate predicted inaction probabilities as input to guide our

decision. We used the technique of Factorization Machine [21]

(FM) to incorporate the additional inputs of predicted inaction

category probabilities. When an item was never displayed before,

we use a default values of zeros as the additional input to FM. For

both Matrix Factorization (MF) [17] and FM, we used 32 latent

dimensions. To answer the recommendation timing question, we

select inaction items that were later acted upon by users and analyze

the Pearson correlation between the predicted NotNow probability

of each inaction item and the time it takes for the user to act on

it later. We also use this predicted NotNow probability to predict

whether the action was in a diferent session measured in terms of

AUC.

As illustrated in Table 3, we did not see improvement for rating

prediction in terms of MAE or RMSE, i.e., estimating user pref-

erence, but saw improvement in action prediction in terms AUC

(predicting whether there will be any action on an item if it is

recommended). It suggests that the inaction model can potentially

improve recommender systems that targets maximizing user action

(user engagement) in the system.We also observe that the predicted

NotNow probability of the inaction model may help the system

make the decision of delaying the recommendation of an inaction

item to the next session or later in time.

9 DISCUSSION AND CONCLUSION

In online recommender systems, there are many possibilities to

explain user inaction on recommendations. In this work, we sum-

marized and collected data on seven major categories of them in-

spired by the psychology literature of behavioral decision making

and found they signiicantly afect user future recommendation

preferences on inaction items. In recommender systems literature,

inaction or missing observations are assumed to relect lack of in-

terest and thus are usually treated as negative feedback [14, 18, 22].

Our research suggests that inaction is more complex than this as-

sumption. For example, there is a high chance that the cases of

ExploreLater and DecidedToWatch inaction are positive user feed-

back. We found attention plays a signiicant role in user inaction,

which implies that new ways of presenting top recommendations

might be necessary to better utilize user attention.

We designed and tested models to infer user inaction so that

systems can avoid always asking users for inaction reasons. We

achieved signiicantly better-than-random classiication accuracy

especially for certain inaction categories, e.g., Watched, Others-

Better or DecidedToWatch. We found interesting predictors that

signify how we might better infer the inaction category probabili-

ties, e.g., predicted wishlist probability signiies a higher chance of

DecidedToWatch and predicted being-rated probability signiies a

higher chance of Watched. Generally, we found that user inaction

inference is a hard task. However, with the advent of more accessi-

ble sensors like portable eye-tracking equipments, we consider it

promising further work to explore how these new measurements

can help better infer user inaction.

We demonstrated that the user inaction classiication model we

built can improve action prediction tasks which can be used by

recommender systems to maximize user action engagement (i.e.,

recommending items that have the highest predicted action proba-

bilities). We also showed that the predicted probability of NotNow

from the inaction model could potentially improve recommenda-

tion timing, e.g., delaying a previously displayed recommendation

to the next session if the model predicts that this item can only be

interesting to the user in future but not now.

Our future work is to test the efects of this inaction model on

user experience through designing and deploying ield experiments.

This can help answer the question of whether this model may

improve recommendation freshness without hurting accuracy or

reduce the confusion of recommender systems that are based on

dynamic algorithms learning from user action feedback neglecting

user inaction.
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