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ABSTRACT
Recommender systems algorithms are generally evaluated primar-
ily on machine learning criteria such as recommendation accuracy
or top-n precision. In this work, we evaluate six recommendation
algorithms from a user-centric perspective, collecting both objec-
tive user activity data and subjective user perceptions. In a field
experiment involving 1508 users who participated for at least a
month, we compare six algorithms built using machine learning
techniques, ranging from supervised matrix factorization, contex-
tual bandit learning to Q learning. We found that the objective
design in machine-learning-based recommender systems signifi-
cantly affects user experience. Specifically, a recommender optimiz-
ing for implicit action prediction error engages users more than
optimizing for explicit rating prediction error when modeled with
the classical matrix factorization algorithms, which empirically ex-
plains the historical transition of recommender system research
from modeling explicit feedback data to implicit feedback data.
However, the action-based recommender is not as precise as the
rating-based recommender in that it increases not only positive
engagement but also negative engagement, e.g., negative action
rate and user browsing effort which are negatively correlated with
user satisfaction. We show that blending both explicit and implicit
feedback from users through an online learning algorithm can gain
the benefits of engagement and mitigate one of the possible costs
(i.e., the increased browsing effort).
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1 INTRODUCTION
Machine-learning-based recommender systems are driven by user
feedback data, e.g., explicit feedback data of ratings [4] and implicit
feedback data of actions [11]. Typically, supervised learning models
to predict rating values or action probabilities are trained in these
systems based on the theory of empirical risk minimization [29],
i.e., optimizing to reduce the prediction errors in historical training
data with regularization to maintain generalizability.

In the history of recommender system research, there was a
transition of trend from using explicit feedback data to implicit
feedback data. The earlier pursuit of the Netflix Prize [4] was a
(explicit-feedback) rating prediction problem. It greatly drove the
progress of recommender system research. Amatriain and Basilico
[3] in Netflix Blog later pushed back on researcher’s focus on rating
prediction, arguing that "accurate prediction of a movie’s rating is
just one of the many components of an effective recommendation
system" and "using predicted ratings on their own as a ranking
function can exclude items that the member would want to watch
even though they may not rate them highly". They turned to a
broad set of techniques to model the various types of user action
data in the system to recommend items that the member is most
likely to play and enjoy.

Until today, the difference between recommender systems built
on explicit vs. implicit feedback data is not addressed in the re-
search literature. This type of research inquiry is hard because
offline metrics can not address it while live experiments require
access to platforms that have real active users. With access to a
movie information site that has thousands of real active users every
month, we set out to compare the two types of recommenders in
a live experiment based on the classical matrix factorization algo-
rithms [16]. Being aware that there are many different algorithms
proposed for modeling both explicit and implicit feedback data
[11, 16, 21, 22], we chose the classical ones for better controlling
the differences of algorithms while focusing on studying the dif-
ferences that are inherent in the two types of feedback data. This
comparison is possible also because the majority of the activities
that users perform on the site is rating movies, which gives us
access to not only implicit user actions but also abundant explicit
ratings.

User-centric research in recommender systems [15] tends to
focus on a broad set of factors and metrics that contribute to the
success of recommender systems with the theoretic goal of sup-
porting user decision making processes in front of a large amount
of choices. Particularly, accuracy, diversity, novelty, serendipity,
popularity, freshness and recency etc. [9, 15, 20, 33, 34] have all
been studied in prior literature. Within this framework, accuracy of
predicting ratings or actions only reflects part of the many factors
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that are important. Previous research has shown that diversifica-
tion, blending in popularity etc. on top of predictions help improve
user engagement and experience [9, 34]. However, how exactly to
blend multiple factors in to produce a final set of recommendations
is tricky because there is no single ground-truth objective to target
(e.g., the success of recommender systems is too abstract) to guide
the blending process.

Adomavicius et al. [1] define the recommendation problem as
a multi-criteria decision making problem (MCDM) and argue that
the suitability of a recommendation for a particular user may de-
pend on more than one utility-related aspect that the user takes
into consideration when making the choice. Correspondingly in
machine-learning-based recommender systems, it is typically mod-
eled as a multi-objective optimization problem to take into account
the multiple criteria [24]. However, the question that whether this
approach can always help achieve an optimal solution across all
criteria or whether it compromises some criteria while improving
others is not yet fully understood. Online tuning in live systems is
necessary to find the best combination weights but it usually takes
long cycles to tune and hence is very expensive to follow.

In this research, we tried two new approaches in a live experi-
ment to combine multiple factors in a principled way (also using
machine learning techniques) inspired by the social theory of tech-
nology acceptance [30] and the reinforcement learning theory on
decision making under uncertainty [13]. The first approach is to
target user return (i.e., technology acceptance) as the objective to
combine multiple factors. The second approach is to target online
(on-policy in decision-making terms, see the related work section)
user interaction following an online learning (specifically contex-
tual bandit learning) algorithm.

The above motivation leads us to the following two research
questions.

• RQ1: What are the differences between recommender systems
based on explicit vs. implicit user feedback data modeled with
the classical matrix factorization algorithms?
• RQ2: Do multi-factor-blending recommendation algorithms
lead to improved or changed user experience and if so, how?

In the rest of the paper, we report on a live experiment involving
more than 1.5K real users of a movie information site using six
different recommenders for at least one month, measuring a broad
set of user-centric metrics including objective user activities and
subjective user perceptions. We found that

• a recommender based on a matrix factorization model mini-
mizing (implicit) action prediction error engages users more
(in terms of page views and interactions with the recom-
mendations) than a matrix factorization model minimizing
(explicit) rating prediction error, which empirically explains
the transition from modeling explicit feedback data to im-
plicit feedback data in recommender system research.
• the increased positive engagement is also associated with a
significant amount of increase in user negative engagement
(e.g., low ratings, clicking "not interested", browsing effort),
likely because implicit feedback is noisier than explicit feed-
back about user preferences.

• blending both explicit and implicit feedback from users by
targeting online (on-policy) user interaction through a con-
textual bandit learning algorithm can help gain the benefits
of engagement and mitigate the possible cost, although it
does not further significantly drive engagement.
• with our current design, targeting user return as the objective
does not significantly affect user engagement (e.g., the actual
future user return and churning risk) and shows a trend of
hurting perception metrics compared with the baseline.

In the following sections, we first introduce the necessary back-
ground on user-centric research and machine learning techniques
in recommender systems. The used techniques of this work span
from classical matrix factorization (together with stochastic gra-
dient descent) to contextual bandit learning (particularly the Lin-
earUCB algorithm) and the Q-learning algorithm. Then we detail
the method of this work and elaborate the online field experiment
design. We show the results next and discuss the findings along
with potentially promising future work. Lastly, we summarize this
work’s conclusion and contribution.

2 BACKGROUND OF USER-CENTRIC
RESEARCH

User-centric research in recommender systems has been increas-
ingly important. As pointed out by McNee et al. [18], recommen-
dation accuracy on its own often is not a sufficient indicator of
recommendation quality, and further work by Konstan et al. [15]
elaborates the evolution of recommender system research from
being concentrated purely on algorithms to research focused on
the rich set of questions around the user experience with the rec-
ommender.

Several frameworks have been proposed and widely used by
researchers to evaluate and understand user experience in recom-
mender systems. For example, Knijnenburg et al. [14] proposed
a comprehensive framework taking into account both objective
system measurements and subjective user perceptions to explain
user experience. McNee et al. [19] proposed an analytical process
model called Human Recommender Interaction that acts as a bridge
between user information seeking tasks and recommendation al-
gorithms to help with the design and structure of recommender
systems. Pu et al. [20] proposed a user centric evaluation frame-
work by employing state-of-the-art survey designs structured and
derived based on theories of human behavioral intention and rea-
soned action. Particularly relevant to our research, the theory of
UT-AUT developed by Venkatesh et al. [30] postulates important
social user factors that cause people to develop behavioral intention
towards technologies and actual behavior of accepting or abandon-
ing of the technologies. We are interested in studying whether this
theory can be combined with machine learning, especially with
reinforcement learning techniques, to optimize for user acceptance
of recommender systems at scale. Work from Xiao et al. [32] is a
direct application and further development of this theory in the
domain of e-commerce recommender agents, e.g., highlighting the
importance of trust, perceived ease of use, and perceived usefulness
in determining the user intention of future use of the recommender
agents.



Explicit or Implicit Feedback? Engagement or Satisfaction? SAC 2018, April 9–13, 2018, Pau, France

3 BACKGROUND OF MACHINE LEARNING
To support explaining the recommenders we built in the experi-
ment, this section sets up notations and gives a formal background
on machine learning techniques used in this work. Note that this
section is not meant to give an overview on how machine learning
can be applied in recommender systems (See [2, 23] for a better
review). Instead, it serves the purpose of motivating our research
and explaining the perspective of approximating recommendation
as a statistical learning problem.

Denoteu as the representation of a user (e.g., basic profile, history
interactions with the system) and c as the current context (e.g., time,
location etc.) of a user entering a recommender system requesting
item recommendations. Define s = (a; c), i.e., s describes the the
environment or state of both the user and the system. Denote a
to be the action or decision that a recommender system needs to
make. In the most simple case, a might be an item to recommend
or a set of recommendations to present. More broadly however, it
might incorporate the decision of how to present.

3.1 Empirical Risk Minimization
In the theory of supervised-learning-based recommender systems,
it assumes that there is a y that represents u’s preference under
context c on a and it follows an unknown conditional distribution
P(y |s;a) (i.e., we focus on determinant statistical models here in-
stead of generative models; see [5] for the difference). If we can
reliably estimate this distribution for all possible s and a (e.g., suffi-
cient observations are made) and fix our decision policy of making
recommendations to always pick a with the largest E(y), then the
recommendation problem becomes the following stochastic opti-
mization problem, where L an objective function measuring the
loss or error of estimating y with a model (or function) f and EP (x)
denotes the expectation of x with respect to the distribution P (also
called the Statistical Decision Theory for supervised learning [7]).

f ∗ = arдminf EP (L(f ,y)) (1)
In reality, since we do not know the true P (assuming there ex-

ists such a P ), the theory further assumes that the observed user
feedback data are I.I.D samples of P . Since parametric models are
popularly used as f in recommender systems, e.g., the widely used
and studied matrix factorization [16], we denote f with f (W ,x)
where x = (s;a) andW are all model parameters without loss of
generality. Therefore, the problem in Equation 1 is further simpli-
fied to the following Empirical Risk Minimization problem [29]
(Equation 2), where N is the number of observations (x ,y pairs)
from user feedback data. д(w) is a regularization term used to pe-
nalize largeW , e.g., in terms of L1 or L2 norms and is the key ofW ∗
having theoretical guarantees when generalizing to the unknown P
[29]. λ is a scalar parameter controlling the strength of the penalty.

W ∗ = arдminw

N∑
i=1

L(f (W ,xi ),yi ) + λд(W ) (2)

3.2 Matrix Factorization
Matrix factorization is a type of low-dimensional embedding model
where x = (u; c;a) are represented by low-dimensional dense vec-
tors. The dimension noted as d here is a hyper-parameter. FunkSVD

[8, 16] is a basic version of the family of matrix factorization models
used in this work. See SVDFeature [6] and libFM [21] for general-
ized versions. Specifically following Equation 2, we have

f (W ,xi ) = f ((b,U ,V ), (ui ;ai )) = b0 + bui + bai +UT
ui ·Vai (3)

Among the model parametersW = (b,U ,V ), b is a bias vector
and U and V are factor matrices. Note that we use u and a as the
index into b, U and V . b0 is reserved for the global bias (similar to
the intercept in linear regression models).

Depending on the domain of y, different loss functions L are
suitable. For a rating prediction problem, we use a least-squares
loss function as follows.

L(f ,y) = 1
2
(f − y)2 (4)

For an action prediction problem, assuming y ∈ {0, 1} represent-
ing whether there is a positive action or feedback from the user or
not. Define the sigmoid function σ (f ) = 1/(1 + exp(−f ))

L(f ,y) = y lnσ (f ) + (1 − y) ln(1 − σ (f )) (5)
For both types of problems, we use L2 norm regularization. That

is,

д(w) = λ1 |b |22 + λ2 |U |
2
2 + λ3 |v |

2
2) (6)

The Stochastic Gradient Descent (SGD) [16] algorithm (shown
in Equation 7) is widely used to solve the optimization problem in
Equation 2 when f is a matrix factorization model. Define err =
y − ŷ where ŷ = f for rating prediction and ŷ = σ (f ) for binary
action prediction. Denote η as the learning rate. The SGD algorithm
follows the following updating rules. Note that the updating rule
for b is common for b0, bu and ba .

b ← b + η(err − λ1b)
Uu ← Uu + η(err ·Va − λ2Uu )
Va ← Va + η(err ·Uu − λ3Va )

(7)

3.3 Q Learning
Different from supervised learning, when applying the theory of
reinforce learning [13, 27] in recommender systems, the recommen-
dation problem is modeled as a sequential decision-making problem.
At any time step t (t = 1, ...,T ) where T is the horizon to consider,
the system is faced with the decision of taking action at given a
state st , i.e., (ut ; ct ). For each at that the system takes, it is given
a reward feedback rt which could be proportionate to the user’s
rating or whether the user performs positive action on the item
recommendation. The goal of the system is to find a policy, which
is a mapping function π (s) → a, to maximize its accumulative
reward across the horizon T , i.e., arдmaxπRT where RT =

∑T
t=1 rt .

This accumulative reward is called the value of a policy π (Policy
Value) if it is followed across the horizon. The Reward Maximization
problem is unbounded when T goes to infinity unless a discounting
factor is applied for future rewards, e.g., defining RT =

∑T
t=1 γ

t−1rt
where the Discounting Rate γ ∈ [0, 1].

The full reinforcement learning problem requires learning not
only the reward function r (s,a) but also how the environment or
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state might change because of its action, i.e., an unknown transi-
tion distribution P(st+1 |st ,at ). Define Q(s,a) as the accumulative
reward or value of taking action a in state s and then following the
best policy π ′ afterwards. The algorithm that iteratively estimates
Q(s,a) (instead of r (s,a)) according to the following Bellman equa-
tion is called Q-learning, where s ′ is the next possible s after taking
action a in state s . Q-learning solves the reinforcement learning
problem with the solution π ′(s,a) = arдmaxaQ(s,a)

Q(s,a) = r (s,a) + γ
∑
s ′

P(s ′ |s,a)arдmaxa′Q(s ′,a′) (8)

In applying Q-learning in real-world problems, we usually as-
sume a parametric form for the Q function Q(s,a). E.g., in [28], an
ensemble of trees are used. In this work, a simple linear function
is used (see the Method section). At the beginning of running the
algorithm, the parameters of Q is randomly initialized based on
which the right-hand side of Equation 8 can be calculated. Then
Q(s,a) adapts itself (by changing parameters) to fit the right-hand
side value. This process is iteratively done until Q(s,a) converges.

3.4 Regret Minimization
If we make the assumption that a does not have an effect on the
state s , i.e., st is I.I.D samples of an unknown distribution P(s), the
reward maximization problem can be converted to the problem
of minimizing the regret of a policy compared with the best pol-
icy π ′ in an assumed family of policies, i.e., the following Regret
Minimization [25] problem:

π∗ = arдminπ

T∑
t=1
(r (st ,aπ ′,t ) − r (st ,aπ ,t )) (9)

Following is a list of the key theoretical differences between the
Regret Minimization problem (shortened as RM) in Equation 9 and
the Empirical Risk Minimization (shortened as ERM) problem in
Equation 2.
• The RM problem assumes st ∼i .i .d P(s) while the ERM
problem assumes xt ∼i .i .d P(x) where x = (s;a).
• The algorithm to solve the RM problem is through online
learning. That is, learning as t goes from t = 1 to T (effec-
tively reading data once) while the algorithm to solve the
ERM problem is iterative typically by reading the observa-
tion data multiple times, e.g., the SGD algorithm.
• There is a difference in terms of On-policy vs. Off-policy for
the algorithm of the RM problem while the algorithm of
the ERM problem does not have such as difference. This
distinction actually derives from the first one. When assum-
ing xt ∼i .i .d P(x), the distribution of the observations is
fixed although unknown. In contrary, if only st ∼i .i .d P(s)
is assumed, different policies or algorithms can observe dif-
ferent distributions of at , r (s,a) (which is closer to reality)
and hence learn differently. This makes the evaluation of
the algorithm for the RM problem hard because the ideal
evaluation (many off-policy evaluation methods have been
proposed in the literature with certain limitations [12]) takes
actual running of the algorithm or policy in the system, e.g.,
through live experiments, which is done in this research.

3.5 Contextual Bandit and LinearUCB
The Contextual Bandit [17] has the same objective as the regret
minimization problem in Equation 9. In our notation, s = (u; c)
is considered as the context and both s and a are represented as
feature vectors (contrary to the discrete value space in the Multi-
Armed Bandit [17] problem), e.g., the vectors of user profile or
item attributes. A well-studied algorithm for the contextual bandit
problem which is also used in this research is LinearUCB [17].
LinearUCB makes further assumptions about r (s,a) to simplify the
problem in Equation 9. Specifically, it assumes (r |x = (s;a)) ∼
Gaussian(xT θ ,σ ), i.e., the expected reward is linearly related to the
input feature vectors. For the purpose of explaining the method
of this research, the LinearUCB algorithm is elaborated as follows
in Algorithm 1 with the notations in this paper. See [17] for a
theoretical bound of the regret of this algorithm.

Algorithm 1: The LinearUCB algorithm
Data: A sequence of s = (u; c) while the algorithm is running

in the system. The system hasM possible actions
(items), each of which represented by a feature vector a.
Denote xt,k to be (st ;ak ) for k = 1, 2, ...,M .

Parameters:α , β , d is the dimension of xt,k
Initialization: A = βId , h = 1d , i.e., equal weights for all
input features.

1 for t = 1, 2, ...,T do
2 θt = A−1h
3 for k=1, 2, ..., K do
4 r̂st ,ak = xTt,kθt + α

√
xTt,kA

−1xt,k
5 end
6 Take action at = arдmaxk r̂st ,ak , let xt = (st ;at )
7 Receive actual reward feedback rt
8 A← A + xtx

T
t

9 h ← h + xt rt
10 end

Result: θT

Note that in real systems, a page of items will be recommended
at one time t instead of a single-item action. In this work, we update
Step 6 in Algorithm 1 to take K actions or items a1,a2, ...,aK at
the same time t and we observe the user feedback for all items and
then Step 8-9 are executed for each of them.

4 METHOD
We conducted an online field experiment on MovieLens 1 to answer
our research questions. MovieLens is a movie information website
that provides users with a database of movie information and per-
sonalized movie recommendations. It has thousands of real active
users every month. The front page of the site has different sections
showing movie cards picked according to different criteria. At the
top is a special section with eight movie cards (i.e., top-K=8) for
personalized movie recommendations powered by recommenda-
tion algorithms. In each section, users can click "see more" to go to
another type of page which we call an explore page to browse more
1https://movielens.org



Explicit or Implicit Feedback? Engagement or Satisfaction? SAC 2018, April 9–13, 2018, Pau, France

movie cards with that section criterion (k=24 movie cards per page).
Users can rate a movie using a 5-star rating widget (0.5-star rating
granularity) displayed along with the movie card according to their
preference for the movie. They can dismiss showing a movie by
clicking the "not interested" icon. They can also click a movie card
to transition to another movie detail page to see details of the movie.
To better understand the effects of recommendation algorithms on
user engagement, we define the following two categories of user
actions on recommendations.
• Positive Actions are defined as high ratings (rating>=4.0),
clicking to see details of movies or adding movies into a
wishlist.
• Negative Actions are defined as low ratings (rating<=3.5)
or clicking the "not interested" icon.

The experiment follows a between-subjects design, i.e., a user
is randomly and persistently assigned into one of the six recom-
menders in Table 1 (all users need to sign in to use the site fea-
tures). During the experiment, when MovieLens users visit the
front page, we display a prominent invitation link at the top asking
users whether they would like to experience a new recommender.
If they click the link, an informed consent page is displayed where
we briefly introduce the purpose of the study (not the experiment
details). Users can either accept or decline to participate in the
experiment. If the user accepts, we randomly assign the user per-
sistently through the experiment into one of the six recommenders.
After that, this user’s site browsing is powered by the assigned
recommender, including the item display in the top recommenda-
tion section of the front page, the recommendation explore page
(potentially with additional user specified filters, e.g., genres or
release dates). Users can click a link at the top right corner of the
site to opt out from the experimental recommender anytime going
back to their original recommender. If a user chooses to opt out, the
user cannot go back into the experiment anymore. This study was
approved by the Institutional Review Board of our organization.

4.1 The Six Recommenders
Table 1 lists the six recommenders we build for the experiment. For
all of the LinearUCB algorithms, we set the exploration parameter
α = 0 and prior β = 1 (since there is natural exploration because we
make a page of recommendations at once, we leave the study of the
exploration effect as future work). For the latter four recommenders
(Bandit-* and Reinforce-State), besides predictions made by MF-
Rating and MF-Action, another two factors from item attributes
are introduced: Recency and Popularity as defined in the following
list. In order to fairly combine these four factors at the beginning
(since they are in different scales), we map them into percentiles
looking at one year of historical recommendation data. By default,
these four factors refer to percentiles instead of the raw values in
the rest of the paper.
• predicted rating: the predicted rating of MF-Rating for a user
ID on an item ID.
• predicted action: the predicted positive action probability of
MF-Action for a user ID on an item ID.
• recency: the release year of the movie item
• popularity: the total number of ratings on the movie in the
system

Reinforce-State recommender is inspired by the theory of UT-
AUT [30] in which the ultimate goal of a technology could be
optimizing for user adoption or acceptance. While whether we can
directly optimize for user acceptance is an unanswered question, we
set out to approach it by employing Q-learning techniques that can
handle delayed reward feedback. Reward here becomes whether
the user returns within a certain period of time (one week is used
in this work). That is, whether a user’s session with a recommender
system is good or bad is determined by whether the user will come
back with a new session within the coming week. The same linear
function is used as in Bandit-State recommender to approximate Q
function for the purpose of fair comparison across recommenders as
in the following Equation 10. Note that it also models the interaction
effects of a and s .

Q(s,a) =
4∑
i=1

ai · θ (a)i + ai · si · θ (s)i (10)

We also need to model user state and its transition in order for
the Bellman Equation 8 to run (i.e., we employ a model-based Q-
learning instead of model-free [13]). From the theory UT-AUT [30],
important psychological metrics characterize the user state, which
however is unobservable. The PO-MDP [26] model is designed for
this case, but to have better experimental control, tractability and
model interpretation, we use a deterministic state transition model.
As shown in Table 1, we characterize the current user state s as
the aggregate means of the four involved factors calculated on
all historically recommended items (with size Nu ) to the user u.
Then the state transition is straightforward when we make a new
recommendation as follows in Equation 11 (i.e., re-calibrating the
means). Based on this transition model and the Bellman Equation
8, Algorithm 2 shows in details how we train the Reinforce-State
model targeting the delayed reward user return. In the algorithm,
Steps 8-9 are equivalent to a LinearUCB update step with explo-
ration parameter α = 0, i.e., using the LinearUCB algorithm as an
online algorithm to estimate the linear Q function. Figure 1 shows
the learning process of the Reinforce-State model. The shape of
the curve shows a trend of convergence after 20 epochs. It also
reflects that this recommender tends to recommend items that after
being displayed users have more sessions afterwards. Note that
Q-learning is an off-policy algorithm and hence can be trained on
historical data although the quality of the estimated Q values de-
pend on how well the state and action spaces are already explored
in the data set.

s ′i (si ,ai ) =
si · Nu + ai
Nu + 1

, i = 1, ..., 4 (11)

The models of MF-Rating, MF-Action and Reinforce-State are
trained offline, while the three models of contextual bandits learn
online (on-policy). During the experiment, we train the three offline
models in batch every week using the past one year of historical
data (around 52M movie displays with 2M positive actions and
2.1M ratings; note that the majority of user activities in the site are
ratings). We see accuracy gains when using recent one year of data
compared with using all historical data evaluating in a temporal
way (i.e., training on historical data excluding the most recent week
and testing on this most recent week of data). The accuracies on
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Table 1: The six recommenders studied in this work

Recommender Input Output Model Algorithm

MF-Rating u: user ID
a: item ID y: rating Equation 3 for f

Equation 4 for L SGD in Equation 7

MF-Action u: user ID
a: item ID

y: positive action
or not

Equation 3 for f
Equation 5 for L Same as MF-Rating

Bandit-Two
a = (a1;a2)
a1: predicted rating
a2: predicted action

r : positive action
or not
on-policy

θ = (θ1;θ2)
E(r (a)) = aT θ

LinearUCB in Algorithm 1

Bandit-Four

a = (a1; ...;a4)
a1, a2: Same as Bandit-Two
a3: recency of item ID
a4: popularity of item ID

Same as Bandit-Two θ = (θ1; ...;θ4)
E(r (a)) = aT θ

Same as Bandit-Two

Bandit-State

x = (s;a)
a: Same as Bandit-Four
s = (s1; ...; s4)
si =

1
Nu

∑Nu
j=1 ai, j ,

for i = 1, ..., 4

Same as Bandit-Four
θ = (θ (a);θ (s))
E(r (s,a)) = ∑4

i=1 ai · θ
(a)
i

+ai · si · θ (s)i

Same as Bandit-Four

Reinforce-State Same as Bandit-State

rt = 1 if the user
returns in a week
and t is the end
of a session
rt = 0 otherwise

θ = (θ (a);θ (s))
Q(s,a) is in Equation 10 Q-learning in Algorithm 2
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Figure 1: TheQ-learning curve in training the reinforcement
delayed reward model using one year of historical data. The
y-axis is the sum of Q-values for all t = 1, ...,T in each epoch
on the x-axis.

average are 0.957 in testing RMSE (Root Mean Squared Error), 0.735
in testing MAE (Mean Average Error) for the rating prediction
model, and 0.703 in testing AUC (Area Under the ROC) for the
action prediction model.

When training the two models each week during the experiment,
we use the recent week of data as the validation set to avoid over-
fitting (regularization parameters for both bias and factor terms
in Equation 3 are set to 1e-5, 20 epochs at maximum, 30 latent
dimensions after tuning offline). Then we further update the trained
models by running the SGD steps in Equation 7 over the validation
data once to make sure the models are up to date. During the week
before the next batch training, the models are updated in real-time
by running the same SGD steps once whenever the users rate or
browse movies in the site.

4.2 Objective Measurements
We measure the following objective activity metrics. In order to
have better controlled observations, we set an observation time
window for one month, i.e., we only look at each user’s activities
for one month after the user joins the experiment. We exclude users
who joined the experiment too recently to collect data across the
full time window. If a user opts out from the experiment during the
observation time window, we cut off the data collection after the
moment that the user opts out.

• #sessions: the number of sessions, i.e., how many session-
level visits to the site do users have. Each user has one ob-
servation for this metric.
• #frontView: the number of front page views. Each user has
one observation for this metric.
• #exploreView: the number of explore page views. Each user
has one observation for this metric.
• frontPositive: whether there is any positive action on the
eight(top-K=8) recommendations in the front page. Each
front page view has one observation for this metric.
• frontNegative: whether there is any negative action on the
eight(top-K=8) recommendations in the front page. Each
front page view has one observation for this metric.
• explorePositive: whether there is any positive action on the
recommendations (top-K>=24) in the explore pages. Each
explore page view has one observation for this metric.
• exploreNegative: whether there is any negative action on the
recommendations (top-K>=24) in the explore pages. Each
explore page view has one observation for this metric.
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Algorithm 2: The Q-learning algorithm for Reinforce-State
recommender.
Data: A sequence of (userIDt , itemIDt , returnt ) where

t = 1, ...,T . returnt is pre-calculated by organizing the
historical data as sessions and setting returnt = 1 if t is
the last recommendation of a session and the user has
another session within the coming week. Otherwise,
returnt = 0

Parameters: The maximum number of rounds: epochmax ;
learning rate η; the number of features d = 8 here
Initialization: Initialize A = αId , h = β1d ; Pre-train the
models of MF-Rating and MF-Action

1 for epoch = 1, 2..., epochmax do
2 for t = 1, 2, ...,T do
3 Calculate (st ;at ) by making predictions on

(userIDt , itemIDt ) using MF-Rating and MF-Action
models.

4 Calculate s ′ based on Equation 11.
5 θ = (θ (s);θ (a)) = A−1h,
6 Calculate Q(s ′,a) for all possible a based on Equation

10 (which involves making predictions for userIDt
on all item IDs with MF-Rating and MF-Action
models to get a)

7 Calculate the right-hand side of the Bellman Equation
8. Denote the value as Q ′t .

8 A← A + (st ;at )(st ;at )T
9 h ← h + (st ;at )Q ′t

10 end
11 end

Result: θepochmax ,T

• optOut: whether a user opts out from the assigned recom-
mender during the time window. Each user has one observa-
tion for this metric.

4.3 Subjective Measurements
We also deploy surveys with the following list of question items ask-
ing users about several perceptional aspects of the recommenders.
For some of the classical metrics, e.g., accuracy, diversity, novelty
etc., we directly use the design of the prior research by Pu et al. [20].
We designed the rest of the questions for measuring the specific
aspects that might be affected by our manipulation. While users are
browsing recommendations in the explore page, we prompt users
through a banner or pop-up; we started with the banner format
and later turned to the pop-up format because the response rate
of a banner is too low to collect enough survey feedback. Each
user is prompted twice at maximum with the first and the second
showing respectively three minutes or a week after a user joins
the experiment (and if they show up browsing the explore page).
We leave the survey link persistent on the page throughout the
experiment so that users can give feedback anytime.
• accuracy: The recommendations match my tastes in movies.
• diversity: The recommendations have a diverse selection of
movies.

• novelty: The recommendations help me discover interesting
movies that I did not know.
• temporary interest: The recommendations reflect my recent
interest in movies.
• attractiveness: I am interested in seeing or knowing more
about the movies in the recommendations.
• confusion: I get disoriented sometimes by the change of the
recommendations.
• balance of recency: The balance between new and old movies
in the recommendations is appropriate to me.
• balance of popularity: The balance between popular and less
popular movies in the recommendations is appropriate for
me.
• understandability: I understand why the recommender is
recommending the movies in my top-picks.
• reactivity: The recommendations change appropriately in
reaction to what I do in MovieLens.
• satisfaction: Overall, I am satisfied by the recent recommen-
dations from the recommender.

5 RESULTS

Table 2: The coefficients (and standard errors in the paren-
theses) of the activity metrics predicting user overall satis-
faction. These estimates come from an ordinal regression
(cumulative link) model treating satisfaction response as or-
dinal values. Each observation is a user who has answered
the satisfaction question for at least once.

Activity Metric
Coefficient

(vs. Satisfaction)
log(#sessions) 0.524 (0.236)
log(#frontView) 0.0946 (0.213)

log(#exploreView) -0.446 (0.152) *
frontPositive rate 0.522 (0.368)
frontNegative rate -0.342 (0.302)
explorePositive rate 0.336 (0.245)
exploreNegative rate -0.052 (0.162)

The experiment was launched on Feb. 8, 2017 and the analysis
was run on Aug. 27, 2017. During this period, 1508 users joined the
experiment for at least one month, which gives us around 250 users
for each recommender condition. They generated 12,627 sessions
and 279,632 activities, including 92,289 ratings (41,651 of which
>= 4.0), 34,587 clicks, and 12,919 wishlist additions. The remain-
ing measured activities are mostly front page and explore page
views. In total, we collected 3887 survey responses which gives
us around 60 responses for each question on each recommender.
We only use the last response of a user on a question if the user
has multiple responses on the same question (we found using all
survey responses of each user gives us the same results). We rely on
different types of regression modeling techniques (including their
p-values and effect sizes) treating MF-Rating as the baseline to draw
conclusions and to avoid excessive pairwise comparisons. In addi-
tion, we performed the Benjamini-Hochberg correction procedure
[10] to control the False Discovery Rate of the analysis (effectively
using around p<=0.0053 as the significance level). Before doing
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Table 3: The coefficients (and standard errors in the paren-
theses) of the perception metrics predicting user overall sat-
isfaction. These estimates come from an ordinal regression
(cumulative link) model treating satisfaction response as or-
dinal values while others as continuous values. Each obser-
vation is a user who has completed all the survey questions
for at least once.

Perception
Coefficient

(vs. Satisfaction)
accuracy 1.31 (0.282) *
diversity 0.595 (0.242)
novelty -0.0294 (0.198)

temporary interest 0.847 (0.297) *
attractiveness 1.07 (0.241) *
confusion -0.244 (0.167)

balance of recency 0.520 (0.209)
balance of popularity -0.0165 (0.209)
understandability 0.255 (0.204)

reactivity -0.198 (0.259)

the analysis, we confirmed that the user activities were not signif-
icantly different for users in different conditions in terms of our
activity measurements during the one month before they joined
the experiment. This is to make sure that the effects come from our
recommender manipulation.

5.1 Measurements Interpretation
We first conduct analysis to correlate user activity metrics and
perceptionmetrics with the user’s overall satisfaction to understand
how different types of activities and different perception aspects of
the recommender contribute to its success or failure.

Table 2 and 3 show the results of predicting user overall satisfac-
tion with both objective activity metrics and subjective perception
metrics. We can see that perceived accuracy and attractiveness
(interest users to know more about the items) are the two most
important factors predicting user satisfaction. Whether recommen-
dations reflect users’ temporary interest is positively predicting
satisfaction but with a smaller effect size. Table 2 also shows that the
amount of browsing (#exploreView) is negatively associated with
user satisfaction. The data shows a trend that higher positive action
rate corresponds to higher user satisfaction while high negative
action rate corresponds to lower user satisfaction.

5.2 RQ1
What are the differences between recommender systems based on
explicit vs. implicit user feedback data modeled with the classical
matrix factorization algorithms?

The first two lines of Table 4 compare MF-Rating (based on ex-
plicit feedback data) with MF-Action (based on implicit feedback
data) on user objective activity measurements. Our overall measure
of user satisfaction was not signficantly different between the two
recommenders, but there are several differences in user activities.
Specifically, MF-Action significantly increases the front page view,

explore page view, frontPositive rate, frontNegative rate and ex-
ploreNegative rate. We find that in terms of the balance of recency,
MF-Action is perceived to be significantly better than MF-Rating.

We did not find significant difference for metrics of #sessions
(mean: 4.9 per user; similar analytical model as #frontView), ex-
plorePositive rate (mean=0.658; similar analytical model as exploreNeg-
ative rate) and optOut rate (mean=0.185; a logistic regression model)
after correction. We did not find significant differences on the other
subjective measurements that we deployed after correction.

5.3 RQ2
Do multi-factor-blending recommendation algorithms lead to im-
proved or changed user experience and if so, how?

As shown in the rest of the Table 4, there is no significant differ-
ence on user satisfaction, but we see potential useful differences on
user experience and activities. Bandit-Two recommender is very
similar to MF-Action (sharing the benefit of increased front page
view engagement, front page positive action rate, the cost of in-
creased front page negative action rate and explore page negative
action rate and improved perception of the balance of item recency)
except that it does not significantly increases the amount of explore
page view. From this aspect, Bandit-Two gains some potential ben-
efit in terms of user satisfaction over MF-Action because explore
page view is negatively predicting user satisfaction as shown in
Table 2.

Bandit-Four recommender is almost identical to MF-Action in
terms of net effects on user activities although it has very different
inputs and algorithms. In other words, the introduced two addi-
tional factors (recency and popularity) compared with Bandit-Two
seem to only increase the amount of explore page browsing. Bandit-
State does not significantly affect the amount of front page view and
explore page view, but significantly increases users’ rate of actions
compared with MF-Rating, including not only front page positive
action rate but also front page negative and explore page negative
action rate. Comparing with all previous recommenders, it seems
to gain some benefits over MF-Rating, MF-Action and Bandit-Four,
but has some cost compared with Bandit-Two because it loses the
benefit of increased front page view engagement.

We did not find significant benefits in terms of the perceived
balance of popularity and recency for Bandit-Four (which explicitly
models these two factors) compared with Bandit-Two, MF-Action
and MF-Rating, with our current model design. On contrary, Bandit-
Two and Bandit-State gains some benefit in the perceived balance
of recency compared with MF-Rating.

Reinforce-State recommender only has a significant negative
effect on the front page action rate compared with MF-Rating and
loses more benefits compared with Bandit-State and others. This is
also consistent with our subjective measurements, where Reinforce-
State has a trend of hurting many perceptional aspects including
perceived accuracy, novelty and attractiveness compared with MF-
Rating.

6 DISCUSSION AND FUTUREWORK
The above section empirically demonstrates the differences between
recommender systems based on user explicit rating feedback and
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Table 4: Means of both objective and subjective metrics for the six recommenders. Significant differences after correction
are marked with *. Metrics that are not presented here do not show significant differences. The numbers in parentheses for
#frontView and #exploreView are standard errors. These estimates come from two negative binomial regression models using
MF-Rating as the baseline. The intervals for frontPositive rate, frontNegative rate, exploreNegative rate are 95% confidence
intervals. These estimates come three mixed-effects logistic regression models using MF-Rating as the baseline (treating user
ID as a random intercept effect). The means of balance of recency and satisfaction are calculated treating the survey responses
as continuous values. The coefficients in the parentheses come from a ordinal regression (cumulative link) model using MF-
Rating as the baseline (treating responses as ordinal values).

Recommender #frontView #exploreView
frontPositive
rate

frontNegative
rate

exploreNegative
rate balance of recency satisfaction

MF-Rating 9.64 (0.733) 41.8 (4.47) 0.0740
(0.057, 0.0947)

0.0198
(0.0134, 0.0291)

0.175
(0.135, 0.224) 2.73 (N.A.) 2.89 (N.A.)

MF-Action 13.1 (1.00)* 72.6 (7.92)* 0.147 *
(0.120, 0.180)

0.0521 *
(0.0383, 0.0706)

0.330 *
(0.272, 0.393) 3.20 (0.879)* 3.03 (0.253)

Bandit-Two 14.1 (1.15)* 48.4 (5.58) 0.133 *
(0.105, 0.166)

0.0485 *
(0.0346, 0.0674)

0.308 *
(0.247, 0.377) 3.32 (0.969)* 3.00 (0.129)

Bandit-Four 13.9 (1.04)* 63.8 (6.78)* 0.125 *
(0.102, 0.153)

0.0471 *
(0.0350, 0.0631)

0.324 *
(0.268, 0.386) 3.04 (0.501) 2.78 (-0.170)

Bandit-State 9.63 (0.741) 41.4 (4.44) 0.140 *
(0.113, 0.173)

0.0605 *
(0.0445, 0.0818)

0.327 *
(0.264, 0.396) 3.26 (0.969)* 3.17 (0.485)

Reinforce-State 10.5 (0.828) 35.2 (3.92) 0.101
(0.0789, 0.128)

0.0405 *
(0.0286, 0.0571)

0.213
(0.164, 0.271) 3.13 (0.647) 2.62 (-0.436)

implicit action feedback. Depending on the goals of the system,
different recommendation algorithms might be used.

If the goal is to increase engagement, then predicting implicit
action is much more effective than predicting explicit ratings. How-
ever, if the goal of the system is to improve user satisfaction, we
need to be cautious not to exclusively optimize for predicting im-
plicit action, because this type of recommender does not seem to
be as precise as a rating-based recommender, as reflected by the
increased negative user engagement, e.g., negative action rate and
increased user browsing effort. This observation points to the fu-
ture direction of exploring to learn from both positive and negative
feedback with a particular focus on penalizing items with negative
user feedback.

Blending the two types of recommenders by optimizing for on-
line user interaction achieves the same level of user engagement as
using implicit-action-based recommender alone, but it does not lead
to more user browsing, which seems to achieve a trade-off between
the goals of user engagement and satisfaction. We think this effect
may generalize to other algorithms modeling explicit or implicit
feedback data because it likely reflects the fundamental property of
the two types of feedback signals instead of the specific algorithms
(although more studies are necessary to confirm). It also suggests
that if we truly want to capture user satisfaction, we might need
to go beyond ratings or actions, e.g., measuring how the system
assists the user’s decision making tasks and optimizing for it.

Lastly, if the goal of the system is to improve users’ perceived
balance of recency on the recommendations, blending the two types
of recommenders helps with this goal as well.

This work also provides design implications for future work on
blending multiple factors (i.e., ensemble of multiple recommenders)
and utilizing user return as a learning feedback signal for recom-
mender systems. Based on our observation in this work, we think
that

• a better control is necessary (e.g., by introducing a broader
set of observations on the context of the user return) in
order to use user return to explain whether a session of
recommendations are good or bad.
• the state (transition) model and the Q function approxima-
tion model need to have enough power (e.g., linear models
may not be enough as used in this work) to capture both
the actual user state (transition) and the complexity of Q
value (a projection of the future value of a recommendation).
Recently, Wu et al. [31] proposed to use recurrent neural
networks for the state transition model and demonstrated
some benefits, which we think is a promising direction to
try.
• the balance of recency or popularity are inherently personal-
ized and high-order (e.g., quadratic) because different users
prefer different kinds of balance [9] and hence going beyond
linear models here might be necessary as well.

We studied several new perceptional metrics for recommenda-
tions different from prior literature [20]. These factors are espe-
cially prominent in a live interactive recommender system, e.g.,
whether the recommendations reflect users’ temporary interest
(which might be only valid in the field), whether users are inter-
ested to know more about the recommendations and whether users
are disoriented by the change of the recommendations (changing
dynamics are common in live systems, e.g., Youtube, Amazon etc.).
We find interesting results that besides the perceived accuracy,
whether recommendations can interest users to know more about
them and reflect users’ temporary preference are significant pos-
itive factors in predicting the overall user satisfaction. However,
future work is necessary to study the psychological constructs of
these question items and how they (together with the behavioral
metrics) can be generalized to platforms that directly involve user
consumption (which could be a stronger type of implicit feedback
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signals compared with the user interactions withmovie information
used in this study and might demonstrate significant differences in
these metrics).

7 CONCLUSION
In this work, we conducted a large-scale randomized, controlled
between-subjects field experiment to study six recommenders built
using machine learning techniques, ranging from supervised ma-
trix factorization, contextual bandit learning to Q learning. We be-
lieve user-centric evaluation in recommender systems is important
and demonstrate a possible way of evaluating complex machine-
learning-based recommenders from a user-centric perspective. We
found that the objective design in machine-learning-based recom-
mender systems significantly affects user experience. Specifically,
optimizing for implicit action prediction error engages users more
than optimizing for explicit rating prediction error modeled with
the classical matrix factorization algorithms. However, the effects
are mixed in a way that not only positive engagement but also
negative engagement are increased substantially, which gives us
a caution from the user’s perspective on targeting implicit action
only because overall user satisfaction could be negatively affected.
We show that blending signals in both explicit and implicit user
feedback through an online interactive learning algorithm gain the
benefits of engagement and mitigate one of the possible costs (i.e.,
the increased browsing effort). We tested the approach of utilizing
user return as a delayed feedback signal on recommendation quality
through Q-learning. It does not improve user experience with our
current design but provides with potentially helpful implications
for future work on recommender systems applying reinforcement
learning.
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