
User-Centric Design and Evaluation of Online Interactive
Recommender Systems

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Qian Zhao

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Joseph A. Konstan

May, 2018

c© Qian Zhao 2018

ALL RIGHTS RESERVED

Acknowledgements

My Ph.D. at the University of Minnesota transformed my way of thinking and changed

how I plan to live for the rest of my life. To many people I owe thanks in this process

of transformation, which I deeply appreciate. Without their guide, help, patience and

love, I would not feel the joy, peace, confidence and hope that I’m full of now.

I am so grateful to my advisor Prof. Joseph Konstan for his advising across my

Ph.D. His wisdom, his deep knowledge and his kind support for me to freely explore

and think as an independent researcher plays a key role to my transformation. I always

feel honored and lucky to be his student. I am thankful for his patience in my mistakes

and sometimes stubborn insistence. I will miss the meetings with him where it almost

always takes less than 30 seconds before he gives me insightful feedback no matter how

horrible my presentation was. I was amazed that the depth of the feedback sometimes

took me a year to digest (“Aha! That’s what he was talking about one year ago!”). I

am also grateful for his kindness to support me and also my family (wife and daughter)

so that I can not only pursue a Ph.D. but also have a happy life in these five years.

I am grateful to my wife Tianjiao Jin for being such a great mother taking care of

our daughter. I am grateful to my host family Bonnie and Bob Oleson. We had so many

sweet and unforgettable memories. They helped me appreciate the stunning beauty of

Minnesota. Most importantly, from them, I got to know God’s love for the whole world.

I am grateful to Prof. Gedas Adomavicius who spent hours discussing research

projects with me and showed me how to think and conduct research rigorously. I

am grateful to Prof. Loren Terveen who showed me how to design rigorous scientific

experiments in the beginning years establishing a foundation of my Ph.D. research. I

am grateful to Research Scientist Dr. F. Max Harper who all the way led me and

encouraged me through many of my projects. He taught me how to design and develop

i

better softwares. I am grateful to Prof. George Karypis who inspired and guided me

to think about the sciences of data modeling and computation. I am grateful to Prof.

Martijn Willemsen who helped me gain a better understanding on the psychological

perspective of recommender system research. I am grateful to Prof. Sashank Varma

who guided me in exploring the fields of educational psychology and cognitive sciences.

I am grateful to my mentors of several internships, especially Dr. Paul Bennett, Dr.

Adam Fourney, Dr. Susan Dumais, Dr. Liangjie Hong, Dr. Shi Yue, Dr. Minmin Chen

and Dr. Jilin Chen, who in one way or another shaped my Ph.D. research and my

perspectives on the fields.

I first heard about GroupLens from my dear friend and mentor Dr. Zhenhua Dong,

who led me into the field of recommender systems. I am grateful to him for his kindness,

patience and guidance. I am lucky to be a member of the GroupLens research lab. I

felt the warm care and support for each other here as a bigger family. I am grateful for

and will miss the numerous times I received detailed and constructive feedback from my

labmates. I am grateful to the guidance and help of Dr. Shuo Chang. I am grateful to

Raghav Karumur who sit next to me in the lab as a companion and has made the past

five years full of fun conversations.

ii

Dedication

To my parents Liangren Zhao and Shuange Wang who unconditionally love me and

cultivated the foundation of my personality. To my aunt Suoe Wang and her husband

Jingshi Ren. To my aunt Liangmei Zhao. To my uncle Jinwei Zhao and his wife Jiqin

Shi. To my uncle Liangsi Zhao. To all my relatives who cared and supported me in

Jiexiu, China.

iii

Abstract

User interaction is present in all user interfaces including recommender systems. Un-

derstanding user factors in interactive recommender systems is important for achieving

better user experience and overall user satisfaction. Many prior works in recommender

systems consider recommendation as a content selection process and there is not much

prior work focusing on studying user interaction, except user on-boarding interaction

design, rating interface design etc. Even for the content selection part, however, it seems

obvious that there are a fair amount of factors lying in the scope of user interaction

as well, to name a few, visual attention and item exposure, perceived temporal change,

reactivity, confusion; i.e., factors regarding content browsing in a typical information

system. My research studies several factors while real users are interacting with online

recommender systems and answers a series of questions regarding those factors. Specif-

ically, my research focuses on gaining a better understanding on a) whether users pay

attention to grids of recommendations displayed in modern recommender interfaces; b)

how to interpret and infer user inaction after we show those recommendations to users

and further utilize this inaction model to improve recommendation; c) how to organize

and present the top-N recommendations to better utilize user attention and increase

user engagement; d) how does recommenders optimizing for being engaging (i.e., as

many user interactions as possible) affect user experience compared with recommenders

optimizing for being right in estimating user preference and maximizing the preference

of users on recommendations displayed; e) how to better support work that combines

user-centric design, evaluation and building complex, scalable recommendation models

going from offline settings into the online environments of providing interactive real-time

responses to user recommendation requests, by building a generic recommender server

framework.

iv

Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables ix

List of Figures xii

1 Introduction 1

1.1 Interactivity of Online Recommender Systems 1

1.2 Problems and Approaches . 2

1.3 The Research Platform: MovieLens . 5

1.4 Thesis Overview . 5

1.4.1 Do users see the recommendations? 6

1.4.2 What does user inaction mean? 7

1.4.3 Should we always show the best? 7

1.4.4 Accuracy, engagement or satisfaction? 8

1.4.5 How to support going from offline to online? 9

2 Related Work 10

2.1 Classical Works in Recommender Systems 10

2.2 Machine Learning Models . 12

2.3 User Modeling . 15

v

2.4 User-Centric Evaluation . 18

2.5 Recommender Toolkits and Machine Learning Libraries 20

3 Gaze Modeling in Grid-Based Interfaces 21

3.1 Introduction . 21

3.2 Related Work . 23

3.3 Building Models for the Gaze Prediction Problem 26

3.3.1 Building Linear Models . 27

3.3.2 Building Hidden Markov Models 28

3.4 Methods . 29

3.4.1 User Browsing Dataset in MovieLens 29

3.4.2 Eye Tracking Protocol Design and Dataset 30

3.4.3 Evaluation . 31

3.5 Results . 31

3.6 Discussion . 35

4 Interpreting User Inaction Feedback 38

4.1 Introduction . 38

4.2 Related Work . 40

4.3 Data Collection . 43

4.4 Interpreting User Inaction . 48

4.5 Future Recommendation . 48

4.6 Classifying User Inaction . 49

4.7 Improve Recommendation . 55

4.8 Discussion . 56

5 Cycling and Serpentining of Top-N Lists 59

5.1 Introduction . 59

5.2 Related Work . 61

5.3 Experiment Design . 64

5.3.1 Measurements . 68

5.4 Results . 70

5.5 Discussion . 73

vi

6 Optimizing for User Interaction 78

6.1 Introduction . 78

6.2 Background of User-Centric Research . 81

6.3 Background of Machine Learning . 82

6.3.1 Empirical Risk Minimization . 82

6.3.2 Matrix Factorization . 83

6.3.3 Q Learning . 84

6.3.4 Regret Minimization . 85

6.3.5 Contextual Bandit and LinearUCB 86

6.4 Method . 87

6.4.1 The Six Recommenders . 88

6.4.2 Objective Measurements . 93

6.4.3 Subjective Measurements . 94

6.5 Results . 95

6.5.1 Measurements Interpretation . 97

6.5.2 RQ1 . 97

6.5.3 RQ2 . 98

6.6 Discussion . 99

7 A Generic Recommender Server 101

7.1 Introduction . 101

7.2 Related Work . 103

7.3 The Generic Server Design . 105

7.3.1 Recommender Components and Extensibility 107

7.3.2 Server Interface, Architecture and Scalability 109

7.3.3 Using the Server . 112

7.4 Case Studies . 115

7.4.1 Extension and Integration . 115

7.4.2 Online Recommender Blending 118

7.4.3 System-Level Cold-Start . 121

7.5 Discussion . 122

vii

8 Conclusion 124

8.1 Contribution . 126

8.2 Future Work . 128

8.3 Implication . 130

References 131

viii

List of Tables

1.1 A toy example of the data that a movie recommender system has. . . . 3

3.1 Different models for the gaze prediction problem, in which bl denotes

baseline, ub denotes training only on user browsing data (or training

without fixation) and et denotes training on eye tracking data (or training

with fixation) as well. 37

4.1 The confusion matrix of the inaction model (rows are the predicted classes

and columns are the actual classes) and the accuracy in terms of AUC for

each class (binary classification of one vs. others using the probabilistic

output of the 7-class classification model). 51

4.2 Three possible ways to utilize the user inaction model in recommender

systems. MF denotes Matrix Factorization and FM denotes Factorization

Machine. 51

4.3 Coefficients (with standard errors) of predictors from a multinomial re-

gression model predicting the category of user inaction. They represent

the log odd-ratio change with respect to the baseline category NotNo-

ticed. “closest” denotes the closest item that has an action if there is

any action on the page. “row” or “col” denotes the row or column index

of the position in the grid. “Sim” denotes similarity score. “numShow”

denotes the total number of displays while “numFrontShow” denotes the

total number of front-page displays. “[action]Ratio” denotes the ratio

of items having the corresponding [action]. closetInvDist represents the

inverse of the Euclidean distance between the acted-upon item (if there

is any) and the inaction item. Significance levels: *p<0.05, **p<0.01,

***p<0.001. 58

ix

5.1 Page-level Column First and Item-level Row First serpentining (PCF-

IRF) algorithm illustrated with (top-)N=240, M (number of rows)=4.

1st, 2nd, kth are the page indices. M controls how scattered the new

top-N list is in the original rankings and also how much change an item’s

ranking can have after cycling). 66

5.2 SSA and EXP metrics and their corresponding survey questions. 69

5.3 Condition naming for the interaction between cycling and serpentining

factors. 69

5.4 Results of different conditions for INT metrics. au indicates the mea-

surement and effect across all users in that treatment group, including

users who opt-out, returning to their default recommender. su indicates

the measurement and effect for users who retain the experimental recom-

mender in the measured first half month. We include both to estimate

the effects both on those who retain the treatment and on the population

of users offered the treatment overall. We analyzed users who opt-out

separately, and in no measurement did they differ significantly from the

control group. numSessions (overall mean is 4.59) is not shown because

there were no statistically significant differences. See Table 5.3 for the

definition of condition names that combine cycling and serpentining. The

numbers are means with standard errors in the parentheses and only sig-

nificant comparisons (through negative binomial regressions) are marked

with significance codes: + (p < 0.1), * (p < 0.05), ** (p < 0.01). 76

5.5 Results of different conditions for SSA and EXP metrics. See Table 5.3 for

the definition of condition names that combine cycling and serpentining.

ctrl. condition is the base to compared with in the ordinal regressions.

The numbers are coefficients (in log odd-ratio scale) with standard errors

in the parentheses. Significance codes: + (p < 0.1), * (p < 0.05), **

(p < 0.01). 77

5.6 The coefficients and standard errors (in parentheses) of the ordinal regres-

sions using individual SSA to predict EXP (usefulness and satisfaction).

Significance codes: + (p < 0.1), * (p < 0.05), ** (p < 0.01), *** (p < 0.001). 77

6.1 The six recommenders studied in this work 89

x

6.2 The coefficients (and standard errors in the parentheses) of the activity

metrics predicting user overall satisfaction. These estimates come from

an ordinal regression (cumulative link) model treating satisfaction re-

sponse as ordinal values. Each observation is a user who has answered

the satisfaction question for at least once. 95

6.3 The coefficients (and standard errors in the parentheses) of the perception

metrics predicting user overall satisfaction. These estimates come from an

ordinal regression (cumulative link) model treating satisfaction response

as ordinal values while others as continuous values. Each observation is

a user who has completed all the survey questions for at least once. . . . 95

6.4 Means of both objective and subjective metrics for the six recommenders.

Significant differences after correction are marked with *. Metrics that

are not presented here do not show significant differences. The numbers

in parentheses for #frontView and #exploreView are standard errors.

These estimates come from two negative binomial regression models us-

ing MF-Rating as the baseline. The intervals for frontPositive rate, front-

Negative rate, exploreNegative rate are 95% confidence intervals. These

estimates come three mixed-effects logistic regression models using MF-

Rating as the baseline (treating user ID as a random intercept effect). The

means of balance of recency and satisfaction are calculated treating the

survey responses as continuous values. The coefficients in the parentheses

come from a ordinal regression (cumulative link) model using MF-Rating

as the baseline (treating responses as ordinal values). 96

7.1 A high-level comparison of the available softwares for building recom-

mender systems. 105

xi

List of Figures

1.1 The front page of MovieLens. 4

1.2 The explore page of MovieLens. 4

3.1 In this work, we predict user gaze in grid-based user interfaces. Above are

four such layouts – YouTube (top-left), Hulu (top-right), Google Apps

(bottom-left) and MovieLens (bottom-right). 22

3.2 Graphical representation of a HMM in which F denotes fixation variable

and A denotes action variable. α, T and E are parameters representing

categorical conditional distributions defining the HMM. N is the length

of the HMM sequence. For the gaze prediction problem, HMM gives

inferred probability distributions of F when the values of A are observed. 28

3.3 AUC boxplots for different models in predicting fixation probability. Higher

scores are better. See Table 3.1 for descriptions of the models. 32

3.4 MAE boxplots for different models in predicting fixation time. Lower

scores are better. See Table 3.1 for descriptions of the models. 32

3.5 ROCs in classifying displayed movie cards into being fixated or not in a

page view. It is from one run of the evaluation procedure. 33

3.6 Fitted probabilities for different positions and the effects plot of position

feature and dwell time in predicting whether a displayed movie is fixated

using logistic regression. No significant interaction is found. 34

3.7 AUC boxplots of the best model et:eyeTrackingHmm in predicting fixa-

tion probability for the different tasks. 35

3.8 MAE boxplots of the best model et:linearModelActionDist in predicting

fixation time for the different tasks. 36

xii

4.1 The flow of the inaction survey illustrating how the questions were asked.

N is the number of responses to the corresponding question. The ratios

are the proportions of options within those response. 45

4.2 The distribution of future recommendation preference for different user

inaction categories. The order of preference (significant after Bonferroni

correction, p<0083) is WouldNotEnjoy < Watched < NotNotice < Not-

Now or Others Better < ExploreLater or DecidedToWatch. 50

5.1 Illustration of how cycling works with an example. 67

5.2 Illustration of how serpentining works with an example. 67

6.1 An example illustration of utilizing delayed user feedback user return as

the learning signal. 90

6.2 The Q-learning curve in training the reinforcement delayed reward model

using one year of historical data. The y-axis is the sum of Q-values for

all t = 1, ..., T in each epoch on the x-axis. 92

7.1 The environment that the generic recommender server is designed for. . 105

7.2 Samantha Data and Request Processing Flows. The directions of the

arrows represent data flow and component dependencies. 110

xiii

Chapter 1

Introduction

Recommender systems have been traditionally used for marketing, e.g., Amazon product

recommendation, but nowadays are closely integrated into various online information

systems that we rely on in our daily life, e.g., personalized search engines, Netflix movie

recommendation, maps with place or restaurant recommendation, Facebook friends feed

recommendation and personal intelligent assistants (such as Microsoft Cortana, Ama-

zon Alexa etc.) that provide proactive informational assistance for people’s current or

future tasks. From a broad perspective of the field, the research of these information

recommendation systems involves not only modeling user preferences and predicting the

next set of items that users might be interested in, but also involves studying the dy-

namic contexts and interactive usage of people and how such systems can take account

of important user factors to design a delightful user experience.

1.1 Interactivity of Online Recommender Systems

Take Youtube recommender systems as an example. When a user goes to the Youtube

home page, a grid of recommended videos for the user to watch are displayed. A grid

here refers to the layout of the interface in which there are several rows and columns of

videos showing information of pictures and titles etc. The user visually examines the

displayed videos and maybe gets interested in one of the recommendations and clicks to

go to the detail page of the video to watch it. After finishing the video, the user goes back

to the home page and realizes that the grid of recommendations have changed based on

1

2

the just watched video. The user might not like the new set of recommendations and

therefore clicks “show more” link to ask for more recommendations. The user browses

another several sets of videos until the user finds another one that is worth watching.

User interaction is present in all user interfaces including recommender systems as

illustrated in the above example. Generally speaking, understanding user factors in

interactive recommender systems is important for achieving better user experience and

overall user satisfaction. Recommender systems are mostly considered as a content

selection process in many works of recommender system research and there is not much

prior work focusing on user interaction, except, e.g., the user on-boarding process [1]

and rating interface design [2] etc. However, even for the content selection part, the

above example demonstrates that there are a fair amount of factors lying in the scope

of user interaction as well, to name a few, visual attention and item exposure, perceived

temporal change, reactivity, confusion; i.e., factors regarding content browsing in a

typical information system.

1.2 Problems and Approaches

Classical approaches to recommender systems simplifies the recommendation problem

into a preference estimation or item ranking problem, e.g., the classical problems of

rating prediction and top-N recommendation.

In the preference estimation approach, the way to make recommendations is to

estimate how much a user will like each of the items in the system based on what the

system knows about the user’s preference on a subset of items. The evaluation of the

approach can be converted to measuring how accurate we can do in terms of predicting

for unobserved user-item pairs. Imagine a system where there are a few users and items

as Table 1.1 shows. The numbers in the table are ratings the system has collected from

users on some items. The question marks are unobserved ratings that the system wants

to predict. If we can build a model with certain confidence in predicting the unobserved

ratings, then we can simply sort items based on the predicted ratings and recommend

the top ones that are not observed, yet. This type of approaches are evaluated with

the rating prediction accuracy metrics, e.g., the errors of the rating predictions with

metrics of Mean Average Precision (MAE) or RMSE (Root Mean Squared Error).

3

Table 1.1: A toy example of the data that a movie recommender system has.
User Zootopia Inside Out Coco Black Swan It

Qian ? 4 ? 3 1

Jimmy 2 ? 1 ? ?

Anna 5 4 ? ? 2

Olivia 1 3 2 ? 3

From the top-N recommendation perspective, the recommendation problem is con-

sidered as selecting the best set of items for a user so that it contains the most items

that this user might potentially like. The metrics to evaluate these types of approaches

is to compute how accurate an algorithm can rank items that users like to the top (i.e.,

precision) and how complete the ranked list is in finding all items that users might like

(i.e., recall). Widely used metrics are Mean Average Precision (MAP) [3], Normalized

Discounted Cumulative Gains (nDCG) [4, 3] etc. Recommendation based on rating pre-

diction can be evaluated in this way as well but the difference is that rating prediction

evaluation or preference estimation evaluation takes all items into account including

those that users tell us that they do not like, which in real systems may not matter as

much to a user since the user might only see the top of the list anyway. Top-N recom-

mendation is particularly suitable for evaluating recommender systems relying on user

implicit feedback where the information it collects from users are not real values of how

much the user likes an item, but a binary action of whether or not the user consumes

or interacts with an item.

However, either the evaluation of preference estimation or top-N recommendation

can not capture many aspects of user interaction in recommender systems. For example,

it does not answer the question of how we should present the top-N recommendations to

users so that they can better process the information in the recommendations. It does

not address the issue of whether we should keep showing a recommendation when a user

goes back to the home page of the system within the same visit or across multiple visits.

The answers to these questions require going beyond offline assumption or modeling

into online environments to study how users perceive recommendations while they are

interacting the recommendations.

Because of lack of access to production systems and real users, many research works

4

Figure 1.1: The front page of MovieLens.

Figure 1.2: The explore page of MovieLens.

in recommender systems fall short of looking at user interaction and user experience, in-

stead mostly focusing on offline algorithm innovation. Industrial recommender research

on the other hand tends to separate out recommender systems from User eXperience

(UX) research mostly treating recommendation as a machine learning problem. This

hinders comprehensive user and algorithm understanding. With access to a live system

MovieLens that has thousands of active users every month, my research focuses answer-

ing questions regarding the user-system interaction process in recommender systems.

5

1.3 The Research Platform: MovieLens

MovieLens 1 is a movie information site in which users can browse movie information

and get personalized movie recommendations. It has thousands of active users every

month. In the front (or home) page of MovieLens, as shown in Figure 1.1, there are

several sections displaying movies according to different criteria (e.g., recent releases,

most popular etc.). The top first section is top-picks, i.e., according to the criteria

of recommendation scores generated by recommendation algorithms. This section has

eight movie cards horizontally displayed in standard PC screens (i.e., one row with eight

columns). Users can click a “see more” link besides the section to see more top picks

in a different type of explore pages. Each explore page is organized in a three-by-eight

grid (i.e., 24 movie cards) and users can browse them page by page, as shown in Figure

1.2.

Each movie card enables three major features: rating, clicking and adding into the

wishlist. If a user knows the movie, the user can enter a rating through a five-star

rating widget (half-star unit) attached with the movie card to tell the system his or her

preference on the movie (this can help the system make better future recommendations).

If a user wants to know more about the movie, the user can click the movie card and

transition to a page with detailed information (e.g., the plot, cast, trailers). If a user

wants to collect the movie for later watching, the user can add the movie into his or her

personal wishlist through a wishlist icon on the movie card.

1.4 Thesis Overview

Following the user-centric approach, my thesis focuses on answering the following se-

ries of questions regarding the online user-system interaction process in recommender

systems, i.e.:

• Do users pay attention to all the displayed recommendations in a typical grid-

based recommender interface? How well can we predict user attention on the grid

of recommendations?

1 https://movielens.org

6

• How to interpret user inaction? How well can we infer the categories of user

inaction reasons? How to utilize the inferred category of user inaction?

• Should we always present the top-N recommendations from best to worst? How

does cycling and serpentining top-N item lists affect user experience?

• How does treating user interaction or engagement as the objective to optimize for

in recommender systems affect user experience, compared with optimizing for the

traditional accuracy of user preference estimation? How to better optimize for

user interaction or engagement?

• With user experience as the system goal, what type of software tools are possibly

needed to accelerate the study of user-system interaction in recommender systems,

especially for those based on complex learning algorithms?

1.4.1 Do users see the recommendations?

In Chapter 3, we studied user visual attention on recommendations presented in a grid-

based interface. As users browse a recommender system, they systematically consider or

skip over much of the displayed content. It seems obvious that these eye gaze patterns

contain a rich signal concerning these users preferences. However, because eye track-

ing data is not available to most recommender systems, these signals are not widely

incorporated into personalization models. We show that it is possible to predict gaze

by combining easily-collected user browsing data with eye tracking data from a small

number of users in a grid-based recommender interface. Our technique is able to lever-

age a small amount of eye tracking data to infer gaze patterns for other users. Our

results show that incorporating eye tracking data from a small number of users signif-

icantly boosts accuracy as compared with only using browsing data, even though the

eye-tracked users are different from the testing users (e.g., AUC=0.823 vs. 0.693 in

predicting whether a user will fixate on an item). We also demonstrate that Hidden

Markov Models (HMMs) can be applied in this setting; they are better than linear

models in predicting fixation probability and capturing the interface regularity through

Bayesian inference (AUC=0.823 vs. 0.757).

7

1.4.2 What does user inaction mean?

In Chapter 4, we study the possible interpretations of user inaction in recommender sys-

tems by deploying a field survey and designing models to infer the category of the reasons

of user inaction. Temporally, users browse and interact with items in recommender sys-

tems. However, for most systems, the majority of the displayed items do not attract any

action from users. In other words, the user-system interaction process includes three as-

pects: browsing, action and inaction. Prior recommender systems literature has focused

more on actions than browsing or inaction. We deployed a field survey in MovieLens to

interpret what inaction means from both the user and the system’s perspectives guided

by psychological theories of human decision making. We further systematically study

factors to infer the reasons of user inaction and demonstrate with offline data sets that

this descriptive and predictive inaction model can provide benefits for recommender

systems in terms of both action prediction and recommendation timing.

1.4.3 Should we always show the best?

In Chapter 5, we challenge the conventional wisdom of recommender systems that opti-

mizes to present a top-N list reflective of the most-highly recommended items a user has

not yet rated or consumed. First, top-N does not consider whether a recommendation

has already been displayed to the user before, that is, whether it is fresh vs. potentially

stale. Second, presenting the standard top-N list may create an experience where contin-

ued exploration results in a sense of finding ever-worse alternatives recommended (e.g.,

when designing a live show, we would not put all the highlights at the beginning and

none at the end, because people are not motivated to continue with that design). We

conducted an online field experiment to test two ways of manipulating top-N: cycling

and serpentining. Cycling demotes recommended items after they have been viewed

several times, while promoting fresher recommendations from the lower portions of the

list. Serpentining displays a “zig-zag” order, in which the best recommendations are

spread across several pages, offering some high-quality and some lower-quality items on

each page as a user continues to explore. We found that both cycling and serpentining

increased user engagement to a substantially higher level, e.g., 57.9% to 64.3% increase

in the average number of interest-showing actions (e.g., clicks, wishlist additions etc.).

8

Along with the benefit of increased engagement however, we also observed a trade-off

between serving users who are open to deeper interaction or engagement versus those

who want efficient recommendations right away, i.e., we found that both cycling and

serpentining had negative effects on user subjective perception of recommendation ac-

curacy, familiarity or usefulness and when the cycling change is too much (i.e., cycling

every time users go back to the home page of the system), it incurs a significantly higher

opt-out rate (users have the option to stop using the assigned recommender condition).

1.4.4 Accuracy, engagement or satisfaction?

In Chapter 6, we studied the effects of a recommender system optimizing for user inter-

action comparing with a recommender that optimizes for preference estimation accuracy

on user experience including user engagement, perception and satisfaction. In the his-

tory of recommender system research, there was a transition of trend from modeling

user explicit feedback data (e.g., five-star ratings on items) to implicit feedback data

(e.g., clicks, watching). Hypothetically, explicit feedback from users carries more precise

signals about how much users like an item while implicit feedback from users reflects the

users engaging interest or intention towards an item at the time of interaction. However,

until today, the difference between these two types of recommender systems built on

explicit vs. implicit feedback data is not addressed in the research literature. We set

out to compare the two in a live experiment. We showed that a recommender maxi-

mizing the likeliness of a user interacting with an item (e.g., clicking to see details or

adding into wishlists etc.; representing user implicit feedback) engages users more than

a recommender maximizing the predicted ratings of a user on items (i.e., the five-star

ratings; representing user explicit feedback). However, we also find the implicit action

based recommender is not as precise as the explicit rating based recommender, i.e.,

although it increased positive user engagement in the system (e.g., high ratings, clicks

etc.), it also increased negative user engagement substantially, e.g., low ratings, giv-

ing not-interested feedback on recommendations, and significantly higher user browsing

effort (which is shown negatively correlated with user satisfaction in the study). We

demonstrated that blending both explicit and implicit feedback from users through on-

line interactive learning algorithms gained the benefits of engagement and mitigated

one of the possible costs, i.e., the increased user browsing effort.

9

1.4.5 How to support going from offline to online?

In Chapter 7, we propose a recommender framework to accelerate the process of going

from offline recommendation modeling to online field evaluation or the online studies

of user-system interaction. Nowadays, more and more researchers have recognized that

there is a gap between the offline recommendation algorithm advancement and the online

improvement of user interactive experience in recommender systems. Some researchers

have mainly focused on developing statistical models to estimate online results from a

data perspective making certain distribution assumptions. I believe that we need to

integrate both human and statistical theories to help translate dynamic interface and

content manipulation to human behavioral or psychological experience change, and the

best way to develop it is to accelerate the user-centric field evaluation of recommen-

dation techniques. I designed, developed, and released Samantha 2 , an open-source

framework to enable turn-key deployment of data-driven predictive recommender sys-

tems. The framework is extensible and has one centralized configuration file to control

data processing pipeline, feature extraction, model building, updating and serving, and

online field evaluation. Samantha has served as the framework for three projects of my

research spanning across domains for both offline and online evaluation. It has served

as the backend of MovieLens. Others also have started adopting it including other

researchers in GroupLens lab 3 and some GitHub community users.

2 https://github.com/grouplens/samantha
3 https://grouplens.org

Chapter 2

Related Work

2.1 Classical Works in Recommender Systems

Collaborative filtering. Collaborative filtering based recommender systems have been

proven successful and widely used in industries. The classical algorithms user-based

or item-based [5] collaborative filtering algorithms compute similarities between users

or items and make recommendations based on the nearest neighbors, e.g., the most

similar items to what users have rated high are recommended in item-based collaborative

filtering [5]. The theory of collaborative filtering is however a social theory because the

fundamental hypothesis behind it is that people who have similar ratings or tastes

before will also have similar ratings or tastes in the future and this relationship is

relatively stable [6]. The classical matrix factorization algorithm FunkSVD [7] is based

on the theory as well and that’s why it is also included under the name of collaborative

filtering (although the border gets blurred after the development of machine learning

community where the theories become learning theories). Although similar to item-item

k-Nearest Neighbors (kNN), SLIM [8] takes another approach by directly postulating

the sparse linear relationship of the predicted rating and user history ratings. SLIM

starts to take the approach of learning and optimization, but maintain the flavor of

some human theories, e.g., global vs. local SLIM [9], which might correspond to human

group perspectives on item similarities.

Context-aware and multi-criteria recommender systems. The theory of

context-aware recommender systems [10] lies in that the suitability of a recommendation

10

11

depends on user context. Going beyond the two dimensions of user-item, context is

incorporated as additional dimensions. In their work on Context-Aware Recommender

Systems (CARS) [10], Adomavicius et al. examined how context can be defined and

used in order to create more intelligent recommendations, such as using pre-filtering

and post-filtering strategies with respect to contextual factors. Context can also be

dynamic (vs. static), because system designers may find previously relevant context no

longer useful, such as shopping companion. Correspondingly, the technique of tensor

factorization [11] gets applied here to model the effects of context. At the same time,

Adomavicius et al. [12] define the recommendation problem as a multi-criteria decision

making problem (MCDM) and argue that the suitability of a recommendation for a

particular user may depend on more than one utility-related aspect that the user takes

into consideration when making the choice. These human theories are picked up by

other machine learning techniques as well in recommender systems, e.g., multi-objective

optimizations [13], although the question that whether this multi-objective optimization

approach can always help achieve an optimal solution across all criteria or whether it

compromises some criteria while improving others is not yet fully addressed.

Dynamical Recommender Systems. Recommendations are typically dynamic.

We use recommender dynamics here to broadly refer to the change in recommendations.

There are many kinds of dynamics in dynamical recommender systems as reviewed

by Rana et al. [14]. The most classic ones model user temporal preference drifting

[15, 16, 17]. Koren [15] proposed to track user preferences on products along the whole

time period in history data sets by explicitly postulating parameters regarding temporal

effects and successfully incorporated this idea into two popular recommender techniques:

a factorization model [18] and the item-item neighborhood model [5] to improve prefer-

ence prediction accuracy. From the algorithm’s perspective, recommendation changes

are affected by how frequently the algorithm updates the models, e.g., item similarities,

user profiles etc. In the extreme case, online updating can be applied for each user

interaction, i.e., the technique of stochastic optimization [19]. Research on user-centric

assessment of these online updating algorithms is rare in the field and my research takes

the initiative to fill the gap.

12

2.2 Machine Learning Models

Generalized matrix factorization and decision tree based ensemble learning.

Originally as a standard tool (e.g., Singular Value Decomposition [20]) in linear algebra,

matrix factorization techniques have been generalized to many different kinds of data

going beyond co-occurrence or relational matrices in recommender systems borrowing

the statistical theories of generalized linear models (i.e., modeling the data through

exponential family distributions) [21, 22]. For example, Gaussian distributions and L2

norm loss function in the corresponding optimization problem can be used for user rat-

ing data, while Bernoulli distributions and logistic loss function can be used for binary

data of item displays and user actions on the item. Essentially, these models are treat-

ing user and item IDs as categorical input features in a generalized regression scenario.

Other features, such as user demographics and item meta information in addition to

user or item IDs, now can be freely incorporated [21], although this does not change the

fundamental fact that these models are fitting the response distributions for whatever

objectives that the system is designed to optimize for. Matrix factorization is where

the border of human theories and machine learning theories gets blurred. Matrix fac-

torization based on the collaborative filtering theory has evolved into low-dimensional

embedding methods in machine learning based on learning theories. These methods

can be widely applied in different types of datasets, but they have disadvantages as

well because these models now has lost their foundation in human theories and it is not

straightforward anymore to translate algorithm advancement into recommender system

improvement, because the latter requires metric definition and user-centric research. In

machine learning, quite different from embedding based models, decision trees such as

CART [23] split the input space into a set of rectangular regions and model the dis-

tribution of response variables in the regions to make prediction. When using trees as

components, powerful predictive models can be constructed through ensemble learning.

Gradient Boosting Machine (GBM) proposed by Friedman [24] can boost any weak

learner which has better than random performance to be a strong predictor. Partic-

ularly, a widely used model Gradient Boosted Decision Trees (GBDT) [24] is a GBM

using trees as the weak learners. Random Forest [25], on the other hand, which repre-

sents another ensemble approach – bagging (v.s. boosting), achieves great performance

13

by averaging many decision trees mainly because of the variance reduction compared

with each individual tree. GBDT has been used by industrial recommender systems,

e.g., Yahoo! News recommendation in [26].

Rating prediction for explicit feedback, action prediction for implicit feed-

back and learning to rank for relative preference. Historically, most recom-

mender system research was based on explicit feedback data from users, e.g., five-star

ratings on movies, which includes the widely used MovieLens datasets [27] and Netflix

competition and datasets [28]. In machine learning, it is typically formulated as rat-

ing prediction, or more traditionally the matrix completion problem [29]. Nowadays,

researchers have switched from explicit ratings, i.e., what users rate, to implicit behav-

iors or actions, i.e., what users do. This is typically formulated as action prediction

problems, e.g., CTR estimation [30]. It requires generalizing the model to handle non-

Gaussian data, i.e., going from regression to generalized regression, e.g., logistic regres-

sion type of models. Ranking metrics are widely used for top-N recommendations e.g.,

Mean Average Precision (MAP) [3], normalized Discounted Cumulative Gain (nDCG)

[3, 4] etc. and researchers also have been working on methods that directly optimize

for the ranking metrics, which are the so-called learning to rank models [31]. From the

user’s perspective, there are two additional reasons that argue for going beyond simple

regression and optimizing directly for ranking metrics. First, implicit feedback data has

uncertainty and is typically relative. For example, if a user clicks something, we cannot

assume this user likes it absolutely, but we might be able to assume it is better than

other alternatives displayed. Second, some psychology research [32] has demonstrated

that pairwise relative ordering is a better preference elicitation method, although bet-

ter here specifically points to the accuracy of the elicited preference, not the amount of

work users or systems need in order to have enough preference data. Among the various

learning-to-rank algorithms, LambdaRank [33] generalizes machine learning models to

be able to learn for most of ranking metrics by approximating the pseudo gradients in

the non-smooth ranking world.

From supervised to reinforcement learning. A number of machine learning

approaches are used in building recommender systems, including the following two

common learning paradigms: supervised learning for instructive feedback [34, 8, 21]

and reinforcement learning for evaluative feedback [35, 36] of which bandits learning is

14

a simpler version [37]. Models that learn from instructive feedback attempt to produce

exactly the same response if given similar inputs. Models learning from evaluative feed-

back are aware that the feedback depends on how they act in the first place and hence

treat not only producing a response but also collecting feedback as part of their decision

[37]. A large corpus of machine-learning-based recommender system research currently

focuses on the first paradigm, typically using offline data sets that have been collected

previously. There is increasingly more research in recommender systems that go beyond

traditional supervised machine learning acknowledging the limitation of the greedy fit

to what the models see previously [35], i.e., moving into the paradigm of reinforcement

learning [36]. Within this paradigm, contextual bandits [35] represent an extended

version of simple multi-armed bandit problems that have been used in recommender

systems where arms can not only be individual decisions but also generalized feature

descriptions of the decisions. Still, contextual bandit problems are a simpler version of

the full reinforcement learning problem because the models assume an i.i.d. sampling

process for the input. This essentially ignores the effects of the previous decisions on

the environment, e.g., the effects of recommendations on user retention. Recommenders

based on Markov Decision Processes (MDP) [36] attempt to model the effects of rec-

ommendations on users and the systems, but the tractability of these types of model is

still an issue [38]. Recently, Wu et al. [38] proposed to use recurrent neural networks for

the state transition models avoiding estimating a full posterior distribution for the state

variables turning into a partially deterministic approach and demonstrated its benefits.

Generally, evaluating a reinforcement learning model in an offline setting is hard be-

cause the paradigm recognizes the biased property of historical data. Various methods

to conduct offline evaluation through robust statistical importance sampling techniques

have been proposed recently [39]. Based on this type of evaluation, researchers have

been looking at possibilities of making recommendations based on their longer-term or

even lifetime value of each user [40].

15

2.3 User Modeling

Visual attention models. To better understand and interpret user implicit feedback

in recommender systems, a fundamental factor that can not be ignored is visual atten-

tion, i.e., the question that whether users see the recommendations at all if they do not

act upon them. From cognitive sciences, two main mechanisms guide the selection of

human attention: top-down and bottom-up (or endogenous vs. exogenous) processes

[41]. We can volitionally focus our attention according to top-down task demands. On

the other hand, our attention may be drawn by bottom-up salient stimuli. This di-

chotomy of attention is still under debate because it involves the fundamental question

of seeing attention as a cause, as an effect or as a combination of both [42], which

has significant implication for interactive applications such as recommender systems.

Specific to visual attention, I focus on reviewing overt attention [43] here, i.e., gaze

is directed to the attended location. Following Marr [44] and Itti’s [45] seminal work,

there has been plenty of research on modeling visual attention in a bottom-up approach,

i.e., saliency prediction [46, 47]. However, researchers have started to criticize the over-

emphasis on low-level saliency representation of visual input and develop new models

of gaze allocation guided by top-down principles to account for complex natural vision

[48]. Tatler et al. [49] showed that a model based solely on behavior biases and blind to

current visual information can outperform a salience-based approach. Top-down task

demands or regularities can be formalized with probability theories, especially Bayesian

statistics. For example, Markov stochastic processes have been applied to model gaze

transition behaviors, since it is intuitive to compare eye movements to random walkers.

Ellis and Stark [50] developed a method to identify statistical dependencies in positions

of eye fixations based on Markov matrices and found that there is statistical dependency

among sequences of fixations independent of the physical placement of the points of in-

terest. Further work built on this [51] modeled sequences of visual fixations as Markov

processes and introduced a quantitative method to measure scanpath similarity based

on character strings. Henderson et al. [52] demonstrated that it is possible to classify

the task that a person is engaged in, i.e., cognitive states from their eye movements by

multivariate pattern classification specifically naive Bayes. Haji-Abolhassani et al. [53]

modeled eye trajectories as a noisy generative process centered on the foci of attention

16

directed by cognitive processes using Hidden Markov Models. My research builds on

this top-down approach and does not model the saliency of the displayed items on a

page, but instead looks at how high-level information of item position presented in the

interface directs and regulates user gaze behavior.

My research studies two hypotheses for user gaze behavior in a grid. In a grid-based

layout, it is likely no longer valid to assume examining results from top to bottom

one by one any more, since there are two potential directions (horizontal and vertical)

that users can direct their attention. I examined two hypotheses regarding how users

examine a grid: F-pattern [54] and center effect [55]. As pointed out by Tatler [55],

observers have a tendency to fixate the center of the screen on computer monitors. They

demonstrated the endurance of the central fixation bias irrespective of the distribution

of image features, which implies that the center of a screen may be an optimal location

for early information processing as learned by users. On contrary, because that a grid

with rows and columns are different from an integral scene picture, the visual hierarchy

might dominate the viewing behavior and users could exhibit a viewing pattern favoring

the top and left sides [54], as suggested by the shape F going from top to bottom and

left to right.

User browsing models. Granka et al. [56] pioneered the investigation of user be-

havior in WWW search through eye tracking analysis. They found that a higher rank in

search results attracts more attention and users do tend to scan the result list from top

to bottom. In information retrieval, machine learning algorithms are used to learn the

relevance between search queries and web URLs from implicit clicking feedback [57].

Joachims et al. [58] examined the reliability of this kind of feedback generated from

clickthrough data using eye tracking and explicit relevance judgement. They concluded

that clicks are informative but biased, i.e., the position bias because of search result pre-

sentation in a list layout. Following these findings, various user attention and browsing

models are proposed to account for the bias in learning algorithms [59, 60, 61, 62] for

information retrieval. Chapelle and Zhang [63] built and evaluated a dynamic Bayesian

network model postulating explicitly examination or attention, action and satisfaction

variables in addition to the observed clicking events. The temporal or dynamic aspect of

the model lies in the assumption that users examine search results from top to bottom

one by one, which is reasonable in a list layout interface and supported by previous

17

work [56]. Because of the cost of eye tracking, researchers have worked on approxi-

mating gaze in two main approaches: gaze-contingent displays [64] or restricted focus

viewing and predicting gaze with mouse positions [65, 66]. As an example, Buscher

et al. [67] compared segment-level display time of search results with eye tracking and

found that although it is much coarser, it works as well as eye-tracking-based feedback

for re-ranking and query expansion. Going beyond applications of information retrieval,

Buscher et al. [68] worked on predicting gaze with web page location-based characteris-

tics as input and generating a model that can be used to improve web page layout and

design.

Eye tracking in recommender systems. Recommender system researchers have

been using eye tracking in different ways. Since recommenders are considered an im-

portant decision support tool, Castagnos et al. [69] studied user decision making behav-

iors when purchasing products assisted by a recommender through eye tracking. They

showed that users actively click and gaze at recommended products up to 40% of the

time and consult the recommendation area more as they approach the end of the de-

cision process. Another intuitive application based on eye tracking in recommenders is

to infer preference or relevance from user gaze behavior. Xu et al. [70] proposed several

algorithms to make recommendations relying on the attention time captured through

commodity eye tracking as preference clues. Puolamaki et al. [71] combined eye move-

ments and collaborative filtering [5] in proactive information retrieval tasks which is

similar to a recommender and demonstrated its accuracy benefit in predicting whether

a document is relevant. Recommender systems that rely on implicit feedback [72] could

suffer from position bias as well, as demonstrated by Hofmann et al. [73] in simulated

experiments. They examined this bias using different click models and showed how

bias following these models would affect the outcome of recommender system offline

evaluation based on implicit feedback data.

Human decision making theories and models. Decision making researchers

have been developing different theories, which are generally divided into normative vs.

behavioral models [74]. Normative theories are predictive and prescriptive, while behav-

ioral theories focus on describing and also predicting human decision making behaviors.

We focus on behavioral decision making here because we want to have a better under-

standing on what’s actually happening in users’ mind while they are looking at a page

18

of recommendations, not the optimal ways of browsing a set of recommendations. Two

fundamental properties of human decision making have to been taken into account in or-

der to be valid as a theory for explaining human decision making behaviors: determinism

vs. probabilism (variability of preferences), statics versus dynamics (preference strength

and deliberation time) [75]. Previous models failed to explain certain behavioral effects

because of losing either one aspect of them, e.g., expected utility model, random utility

model, or dynamics of actions [75]. Decision field theory (DFT) [75, 76] on the other

hand is a theory that takes into account both aspects and has been shown by previous

research that can account for many prominent human behavioral effects. According to

DFT, a decision is reached by the following deliberation process: as attention switches

from one event to another over time, different affective values are probabilistically se-

lected, these values are compared across actions to produce valences, and finally these

valences are integrated into preference states for each action. This process continues

until the preference for one action exceeds a threshold criterion, at which point in time

the winner is chosen.

Other theories regarding human decision making have been proposed and studied,

too. Well received ones are the Competing Accumulator Model [77] and ECHO model

[78], in which the Competing Accumulator Model can account for all similar effects

as DFT does (although through different mechanisms and further work is needed to

discriminate between the two models). The ECHO model can account for the similarity

and attraction effects but has not been shown to account for the compromise or loss

aversion effects. What’s interesting about the ECHO model is that it introduces a

special node in the connectionist network, called the external driver, representing the

goal to make a decision.

2.4 User-Centric Evaluation

From offline metrics to user perception and behavior. Recommender systems

can be evaluated with offline metrics and online field experiments. Offline metrics some-

times make assumptions about online environments. One such important assumption

is that the recommendation value decays going from the top to the bottom of a recom-

mended item list. The nDCG [4] and weighted recall (or Breese’s score [79]) evaluation

19

metrics, for example, assume exponential decay. My research re-examines this assump-

tion because it may not be optimal to display all best recommendations at the same

time. List-wise optimization have been shown to improve recommendations [80], which

suggests that an optimal list may not be the same as a collection of individually opti-

mal items. User-centric research in recommender systems has been increasingly more

important. As pointed out by McNee et al. [81], offline recommendation accuracy on its

own often is not a sufficient indicator of recommendation quality, and further work by

Konstan et al. [82] elaborates the evolution of recommender system research from being

concentrated purely on algorithms to research focused on the rich set of questions around

the user experience with the recommender. Several frameworks have been proposed and

widely used by researchers to evaluate and understand user experience in recommender

systems. For example, Knijnenburg et al. [83] proposed a comprehensive framework tak-

ing into account both objective system measurements and subjective user perceptions to

explain user experience. I apply this framework in my research. Particularly, they pos-

tulate six components and their causal relationships objective system aspects (OSA),

subjective system aspects (SSA), user experience (EXP), user interactions or activities

(INT), situational characteristics (SC) and personal characteristics (PC) – according

to Theories of Reasoned Action (TRA) [84]. McNee et al. [85] proposed an analytical

process model called Human Recommender Interaction that acts as a bridge between

user information seeking tasks and recommendation algorithms to help with the design

and structure of recommender systems. Pu et al. [86] proposed a user centric evaluation

framework by employing state-of-the-art survey designs structured and derived based

on theories of human behavioral intention and reasoned action. Particularly relevant to

our research, the Unified Theory of Acceptance and Use of Technology (UTAUT) devel-

oped by Venkatesh et al. [87] postulates important social user factors that cause people

to develop behavioral intention towards technologies and actual behavior of accepting

or abandoning of the technologies. Work from Xiao et al. [88] is a direct application and

further development of this theory in the domain of e-commerce recommender agents,

e.g., highlighting the importance of trust, perceived ease of use, and perceived usefulness

in determining the user intention of future use of the recommender agents.

20

2.5 Recommender Toolkits and Machine Learning Libraries

There are a variety of softwares that have been built regarding recommendation or

machine learning that can be used to build recommender systems. Some implements

specific models or algorithms, e.g., Apex SVDFeature [21], SLIMx [8] etc. which we

categorize as specific tools. Some provide with implementations for multiple models

or algorithms and especially provide their capabilities through programming language

APIs, e.g., Lenskit for collaborative filtering based algorithms [89], scikit-learn [90] and

SparkML [91] for various kinds of machine learning models.

Researchers have developed general libraries to build models with complicated struc-

tures, e.g., the recent popular platform TensorFlow [92]. Stan [93] has been developed

earlier than TensorFlow although it is less scalable because it is oriented mainly to-

wards offline data analysis. TensorFlow provides powerful modeling techniques but its

support for hypothesis testing and other types of analysis is limited because of its focus

on computational performance and production deployment.

Although most of the toolkits or libraries provide their capabilities through program-

ming language APIs or sometimes console commands, Prediction.io [94] when integrated

with SparkML is quite different because it is service-oriented. It has production serving

and maintaining components and also integrates a variety of models and algorithms

mostly through SparkML. This software is the most similar one to what I have built

although there are also many differences as elaborated later in Chapter 7.

Chapter 3

Gaze Modeling in Grid-Based

Interfaces

3.1 Introduction

Recommender systems research has experienced a transition from modeling user pref-

erences based on explicit feedback [95, 5], e.g., what users are rating to preference

modeling based on implicit feedback [72, 96], e.g., what users are clicking. Nowa-

days, it has been recognized that successful recommendations also need to take into

account user perceptions of recommendation properties such as diversity and serendip-

ity [3, 81], user short-term information needs, user context, and mood, i.e., what users

are thinking.

Understanding how users look at a recommender system’s content will enable fur-

ther improvements to how systems model and react to user needs. As users browse a

recommender system, they systematically consider or skip over much of the displayed

content. It seems likely that these eye gaze patterns contain a rich signal concerning

these users’ state of mind. Indeed, early studies have shown the potential for improving

recommender systems by incorporating eye tracking data [70, 71].

The ability to incorporate eye tracking data into a recommender system enables a

variety of potential improvements. For example, recommender systems currently do not

know which items are looked at and ignored versus simply not looked at. But this is a

critical distinction – if the user looks and does not act, that inaction provides a signal

21

22

Figure 3.1: In this work, we predict user gaze in grid-based user interfaces. Above are
four such layouts – YouTube (top-left), Hulu (top-right), Google Apps (bottom-left)
and MovieLens (bottom-right).

that can be used to influence whether and when to display that item in the future,

though interpreting whether such gazes represent interest or lack thereof may require

context and further analysis.

Also, since recommender systems essentially provide decision support for users, hav-

ing user gaze enables more nuanced studies on user high-level decision-making processes

as demonstrated by researchers who study human decision theory through eye tracking

[97].

The biggest challenge to incorporating user gaze data into recommender systems

is a technical one: it requires eye tracking technology, which is generally not available

outside of specialized labs. It is possible that future systems will make gaze detection

a common feature available to system builders, due to the ubiquitous presence of high-

resolution user-facing cameras. It is also possible that eye tracking data will never be

commonly used due to the privacy concerns that such low-level tracking raises.

To address these challenges, in this work we show that it is possible to model and

predict user gaze without requiring the deployment of ubiquitous eye tracking technol-

ogy. We predict gaze by combining easily-collected user browsing data with eye tracking

data from a small number of users. Our technique is therefore able to leverage a small

amount of eye tracking data to infer gaze patterns for other users.

In this research, we model gaze in the context of a grid-based user interface layout,

which has become one of the most common user interface layouts in recommender

23

systems. For example, this is the layout used in YouTube, Hulu, Google Apps, and

MovieLens, as shown in Figure 3.1. We address the following three research questions:

• RQ1: How accurately can we predict gaze on items in a grid-based interface?

– based on models trained with only user browsing data. (Specifically, item

position in the interface, user dwell time on the page, and actions such as

clicks, ratings and wishlistings on items.)

– based on models trained with collected eye tracking data for a small num-

ber of users in addition to user browsing data.

• RQ2: How is gaze distributed on different positions in a grid-based interface?

• RQ3: How does gaze prediction accuracy vary for different tasks or modes of

usage?

We make the following contributions in this work:

• We show that incorporating eye tracking data from a small number of users signifi-

cantly boosts gaze prediction accuracy as compared with only using user browsing

data, even though the eye-tracked users are different from testing users;

• We demonstrate that Hidden Markov Models (HMMs) can be applied in this

setting and that they are better than baseline models in predicting fixation prob-

ability and capturing the interface regularity through Bayesian inference.

3.2 Related Work

Human attention theory. From cognitive sciences, two main mechanisms guide the

selection of human attention: top-down and bottom-up (or endogenous vs. exogenous)

processes [41]. We can volitionally focus our attention according to top-down task de-

mands. On the other hand, our attention may be drawn by bottom-up salient stimuli.

This dichotomy of attention is still under debate because it involves the fundamental

question of seeing attention as a cause, as an effect or as a combination of both [98],

which has significant implication for interactive applications such as recommender sys-

tems. Specific to visual attention, we focus on reviewing overt attention [99] here, i.e.,

24

gaze is directed to the attended location. Following Marr [100] and Itti’s [45] seminal

work, there has been plenty of research on modeling visual attention in a bottom-up

approach, i.e., saliency prediction [46, 47]. However, researchers have started to criti-

cize the over-emphasis on low-level saliency representation of visual input and develop

new models of gaze allocation guided by top-down principles to account for complex

natural vision [48]. Tatler et al. [49] showed that a model based solely on behavior bi-

ases and blind to current visual information can outperform a salience-based approach.

Top-down task demands or regularities can be formalized with probability theories, es-

pecially Bayesian statistics. For example, Markov stochastic processes have been applied

to model gaze transition behaviors, since it is intuitive to compare eye movements to

random walkers. Ellis and Stark [50] developed a method to identify statistical depen-

dencies in positions of eye fixations based on Markov matrices and found that there is

statistical dependency among sequences of fixations independent of the physical place-

ment of the points of interest. Further work built on this [51] modeled sequences of

visual fixations as Markov processes and introduced a quantitative method to measure

scanpath similarity based on character strings. Henderson et al. [52] demonstrated that

it is possible to classify the task that a person is engaged in, i.e., cognitive states from

their eye movements by multivariate pattern classification specifically naive Bayes. Haji-

Abolhassani et al. [53] modeled eye trajectories as a noisy generative process centered

on the foci of attention directed by cognitive processes using Hidden Markov Models.

Our study builds on this top-down approach. We do not model the saliency of the dis-

played items on a page, but instead look at how high-level information of item position

presented in the interface directs and regulates user gaze behavior.

Eye tracking and information retrieval. Joachims et al. [56] pioneered the

investigation of user behavior in WWW search through eye tracking analysis. They

found that a higher rank in search results attracts more attention and users do tend

to scan the result list from top to bottom. In information retrieval, machine learn-

ing algorithms are used to learn the relevance between search queries and web URLs

from implicit clicking feedback [57]. Joachims et al. [58] examined the reliability of

this kind of feedback generated from clickthrough data using eye tracking and explicit

relevance judgement. They concluded that clicks are informative but biased, i.e., the

position bias because of search result presentation in a list layout. Following these

25

findings, various user attention and browsing models are proposed to account for the

bias in learning algorithms [59, 60, 61, 62] for information retrieval. Chapelle and Zhang

[63] built and evaluated a dynamic Bayesian network model postulating explicitly ex-

amination or attention, action and satisfaction variables in addition to the observed

clicking events. The temporal or dynamic aspect of the model lies in the assumption

that users examine search results from top to bottom one by one, which is reasonable

in a list layout interface and supported by previous work [56]. Because of the cost of

eye tracking, researchers have worked on approximating gaze in two main approaches:

gaze-contingent displays [64] or restricted focus viewing and predicting gaze with mouse

positions [65, 66]. As an example, Buscher et al. [67] compared segment-level display

time of search results with eye tracking and found that although it is much coarser, it

works as well as eye-tracking-based feedback for re-ranking and query expansion. Going

beyond applications of information retrieval, Buscher et al. [68] worked on predicting

gaze with web page location-based characteristics as input and generating a model that

can be used to improve web page layout and design.

Eye tracking and recommender systems. Recommender system researchers

have been using eye tracking in different ways. Since recommenders are considered

an important decision support tool, Castagnos et al. [69] studied user decision making

behaviors when purchasing products assisted by a recommender through eye tracking.

They showed that users actively click and gaze at recommended products up to 40% of

the time and consult the recommendation area more as they approach the end of the

decision process. Another intuitive application based on eye tracking in recommenders

is to infer preference or relevance from user gaze behavior. Xu et al. [70] proposed

several algorithms to make recommendations relying on the attention time captured

through commodity eye tracking as preference clues. Puolamaki et al. [71] combined

eye movements and collaborative filtering [5] in proactive information retrieval tasks

which is similar to a recommender and demonstrated its accuracy benefit in predicting

whether a document is relevant. Recommender systems that rely on implicit feedback

[72] could suffer from position bias as well, as demonstrated by Hofmann et al. [73] in

simulated experiments. They examined this bias using different click models and showed

how bias following these models would affect the outcome of recommender system offline

evaluation based on implicit feedback data.

26

Two hypotheses for user gaze behavior in a grid. In a grid-based layout, it is

likely no longer valid to assume examining results from top to bottom one by one any

more, since there are two potential directions (horizontal and vertical) that users can

direct their attention. We have two hypotheses regarding how users examine a grid:

F-pattern [54] and center effect [55]. As pointed out by Tatler [55], observers have a

tendency to fixate the center of the screen on computer monitors. They demonstrated

the endurance of the central fixation bias irrespective of the distribution of image fea-

tures, which implies that the center of a screen may be an optimal location for early

information processing as learned by users. On contrary, because that a grid with rows

and columns are different from an integral scene picture, the visual hierarchy might

dominate the viewing behavior and users could exhibit a viewing pattern favoring the

top and left sides [54], as suggested by the shape F going from top to bottom and left

to right.

3.3 Building Models for the

Gaze Prediction Problem

We define a specific type of gaze prediction problem here – Aggregated Fixation

Prediction. Fixation refers to the stationary period between saccades [99], in other

words, the maintaining of visual gaze on the same location (we focus on predicting

fixation here because in most human visual activities, we reply on fixations to take in

visual information [99]). Consider a user browsing a page in a grid layout (examples

shown in Figure 3.1), which has r rows and c columns and r ∗ c items in total. The

problem is to predict fixation probability, i.e., whether the user has fixated, and

fixation time, i.e., how long the user has fixated, on each of the r∗c items aggregating

the entire browsing of the user on the page, given item positions, the user’s dwell

time on the page and the user’s actions (e.g., rating, clicking or wishlisting) on some

of the items. Note that the unit of prediction is for each displayed item in one page

view.

27

3.3.1 Building Linear Models

We start with linear models to predict users’ fixation. With access to a group of users’

fixation data, we can build supervised machine learning models to predict future fixa-

tions for this group of users and even for other users.

For predicting fixation probability, we build a mixed-effect logistic regression model

(taking into account the correlation among positions by using a random intercept for

each page view) using the following three groups of features:

• Position features: row index, ranging from 1 to r, and column index, ranging from

1 to c;

• Dwell time: log transformed seconds spent on a page;

• 1/minActionDist : the inverse of the minimum distance to actions on a page. This

feature encodes the insight that users are more likely to fixate on surrounding

items when they interact with an item on a page. For example, if a user acts upon

(e.g., clicks) the second position, then it is likely that the user has fixated on the

first or third position, which are small in terms of Euclidean distance calculated

with row index and column index as the coordinates. Since there might be multiple

actions, we take the minimum. We take the inverse of the minimum distance so

that the coefficient of the feature is positive and the value of the feature equals

zero with no action.

For predicting fixation time, we use the same set of features but a different model,

a two-stage hurdle linear model [102]. This model handles zero inflation property in

training data, i.e., users have not fixated on many displayed items, by modeling each

data point first through a logistic regression and then through a zero-truncated negative

binomial regression.

To simplify result presentation, we refer to linear models without using 1/minAc-

tionDist feature as linearModel and models using 1/minActionDist feature as linear-

ModelActionDist which are also summarized in Table 3.1.

28

Figure 3.2: Graphical representation of a HMM in which F denotes fixation variable
and A denotes action variable. α, T and E are parameters representing categorical
conditional distributions defining the HMM. N is the length of the HMM sequence. For
the gaze prediction problem, HMM gives inferred probability distributions of F when
the values of A are observed.

3.3.2 Building Hidden Markov Models

We also use Hidden Markov Models, HMM for short, to predict users’ fixation, as

shown in Figure 3.2. For each page view, the dwell time is partitioned into small pieces

of constant time intervals (the length of the interval is a parameter to tune). Each

interval is associated with two variables: fixation F and action A. F takes r ∗ c possible

values, representing the positions a user might fixate on the grid-based interface. We

did not model no fixation (which could result from users’ looking away or eye tracker’s

loss of gaze data. Time intervals with no fixation are removed from the observed F

sequence) because it is less relevant for the prediction tasks. Given F , A can take

r ∗ c + 1 possible values, i.e., one of the r ∗ c positions that a user acts upon plus the

possibility of no action upon any position (we did not differentiate different types of

actions). If multiple fixations are present in one time interval, we pick the one with

longer fixation duration. If multiple actions are present (which rarely happens for small

time intervals), we shift later actions to the following time intervals for which there is

no action present or otherwise only use the first action. The parameters of this HMM

are same for all users, i.e., the HMM is not personalized:

• initiation vector α (length of r ∗ c) represents the categorical probability distri-

bution of the initial fixation.

• transition matrix T (size of r ∗ c by r ∗ c) represents the categorical transition

29

probabilities from previous fixation to the next.

• emission matrix E (size of r ∗ c by r ∗ c + 1) represents the categorical action

probabilities given the current fixation position.

With fixation data from some users’ page views (using eye tracking), we can estimate

the above parameters by maximizing the likelihood of observing both the fixations and

actions. We refer to this model as eyetrackingHmm (summarized in Table 3.1 as

well).

Without fixation data, we can still estimate the above parameters with observed

actions as follows. Firstly, we estimate E with one assumption – users usually do not

act upon items they are not fixating on. Therefore, We set small probability values

(specifically, 10e − 6 in our algorithms) in E where positions of actions are different

from positions of fixation. For the other case, we estimate the probability of acting

upon f given that F = f from frequency of actions on f in users’ action logs. Secondly,

we estimate α and T , by treating observed action as fixation, with the four algorithms

named starting with ub: in Table 3.1.

Predicting based on HMM relies on the inferred responsibility parameters, i.e., pos-

terior distribution P (Fi|A), denoted by a matrix R (N by r∗c), in which N is the length

of the HMM sequence. Si defined in Equation 3.1 is computed for predicting fixation

probability and Li defined in Equation 3.2 is computed for predicting fixation time.

The rationale behind these formulas lies in that P (Fi|A) tells how much responsibility

fixating on a position takes for the observed action sequence.

Si =

N∑
j=0

Rj,i, for i = 1 to r ∗ c (3.1)

Li = DwellT ime ∗ Si∑r∗c
k=1 Sk

, for i = 1 to r ∗ c (3.2)

3.4 Methods

3.4.1 User Browsing Dataset in MovieLens

We focus on the interface called the explore page. It is a paginated three-rows-by-eight-

columns grid-based layout presenting movie recommendations. Most of the explore page

30

views are completely filled with 24(= 3∗8) movie cards, as shown in Figure 3.1 (bottom-

right).

We use a dataset with one month of user browsing data from November 2015. For

our purposes, we track page dwell time and ratings, clicks and wishlistings on movie

cards. When a user leaves the explore page by clicking a movie card and directly returns,

we count it as a continuing page view of that explore page, rather than a fresh new page

view, so the dwell time accumulates through interruptions such as movie detail page

views. In total, this data set has 102,039 page views with associated dwell times.

3.4.2 Eye Tracking Protocol Design and Dataset

We collected 17 subjects’ gaze data using Tobii T60 Eye Tracker (0.5 degree accuracy,

60 Hz data rate, 17” screen size, 1,280x1024 resolution, roughly 65 cm viewing distance).

These subjects are university students, including twelve males and five females, aging

from 18 to 25 and majoring across eight disciplines. Subjects reported that they had

watched five or more movies in the past two months with two exceptions: one had

watched two movies and another had watched three. They had never used MovieLens

before. We set up an account for each subject and asked them to perform the five tasks

listed below which takes around 30 minutes after the eye tracker calibration procedure.

• Task 1: Browsing for fun (five minutes). This is for the subjects to get to know

MovieLens features and obtain natural gaze and browsing behavior.

• Task 2: Rate 15 movies. Subjects were instructed to rate based on their preference

on movies in a five-star rating widget.

• Task 3: Find 10 movies you’d like to watch given a three-month holiday. Subjects

were asked to add those movies into their wishlist using the wishlisting feature.

• Task 4: Find 5 movies you’d like to recommend to your friends.

• Task 5: Find 5 movies you’d like to recommend to a 12 years’ old child.

We directly used the fixation records generated by Tobii Eye Tracker (see its manual

for details of the algorithms to compute fixation from raw gaze1). Each record has

1 http://www.acuity-ets.com/downloads/Tobii%20Studio%203.3%20User%20Guide.pdf

http://www.acuity-ets.com/downloads/Tobii%20Studio%203.3%20User%20Guide.pdf

31

fixation duration and screen coordinates. To obtain fixations on the displayed movie

cards, we recorded the movie card position coordinates, and tracked scrolling events as

well to count for the position change. These positions are programmatically matched

with the eye tracker’s fixation records. Aggregating all 17 subjects, we collected 452

qualified page views (i.e., views of explore page completely filled with 24 movie cards.).

Since the unit of prediction is with respect to each movie card display, we have 10,848(=

24 ∗ 452) data points to use (Among them, we have 2304 for Task 1, 2760 for Task 2,

3960 for Task 3, 552 for Task 4 and 1008 for Task 5).

3.4.3 Evaluation

For each of the 17 subjects in the eye tracking study, we have their true fixations on

each movie card in a page view, which is the target variable to predict. Prediction

accuracy is measured with AUC (Area Under the ROC) for predicting fixation

probability, i.e., to classify a displayed movie in a page view into being fixated or not

and MAE (Mean Absolute Error) for predicting fixation time. The unit of MAE is

in seconds.

Depending on whether using true fixation data or not to train models, the evaluation

has two scenarios. In the training-with-fixation scenario, both fixation and browsing

data from the 17 subjects in lab settings are used. We randomly pick 4 (around 20%)

subjects and use their data for testing, while reserving the other subjects for training.

This procedure is conducted multiple times (around 100 runs; a different set of subjects

are picked each time) to compute variance of the metrics. In the training-without-

fixation scenario, as its name suggests, only user browsing data is used for training,

including both the one month dataset and user browsing data from the 17 subjects in

lab settings. In order to be able to compare the accuracy between these two scenarios,

testing phase of this scenario uses the exact same fixation data as the previous scenario.

3.5 Results

RQ1: How accurately can we predict gaze on items in a grid-based interface? Figures

3.3 and 3.4 illustrate the accuracy of predicting fixation based on models trained with

only user browsing data (the bottom five boxplots) and with eye tracking data (the

32

top three boxplots). First of all, we see that there is a significant accuracy boost

resulting from training on eye tracking data even though the training and testing users

are different. Specifically, AUC increases from 0.693 for exactActionHmm to 0.823

for eyeTrackingHmm (p ≈ 0) and MAE decreases from 0.466 for simpleActionStats to

0.332 for linearModelActionDist (p ≈ 0). This result demonstrates that gaze patterns

are consistent even across different users, and that our models capture these patterns

very well.

Figure 3.3: AUC boxplots for different models in predicting fixation probability. Higher
scores are better. See Table 3.1 for descriptions of the models.

Figure 3.4: MAE boxplots for different models in predicting fixation time. Lower scores
are better. See Table 3.1 for descriptions of the models.

In the training-with-fixation scenario, eyetrackingHMM performs significantly better

than linearModelActionDist in predicting fixation probability (AUC = 0.823 vs. 0.757;

33

Figure 3.5: ROCs in classifying displayed movie cards into being fixated or not in a
page view. It is from one run of the evaluation procedure.

p ≈ 0). However, it performs worse in predicting fixation time (MAE = 0.520 vs.

0.332; p ≈ 0). In the training-without-fixation scenario, exactActionHmm is much

better than simpleActionStats (AUC = 0.693 vs. 0.580; p ≈ 0) in predicting fixation

probability (For an intuitive interpretation, Figure 3.5 shows the ROCs for one run of

the evaluation procedure). But similarly, it has worse MAE (0.520 vs. 0.466; p ≈ 0)

in predicting fixation time. RestExactActionHmm and RestTruncActionHmm do not

improve, which might be explained by overfitting to the action data set.

The above results show that HMM is more effective in capturing the interface reg-

ularity through Markov matrices and Bayesian inference in predicting binary-valued

fixation vs. no-fixation, but is not very good at predicting real-valued fixation time. It

might be explained by the choice of partition granularity in HMM, since we have to de-

cide on a time interval. We are using one second for all HMMs after exploring multiple

choices. It might illustrate a general difficulty of a generative modeling approach such as

HMMs compared with a discriminative modeling approach such as hurdle linear models,

in which fewer assumptions have to be made. Actually, hurdle linear models have better

accuracy than ordinary linear regression, poisson or negative binomial regression and

random forest with the same set of features. Note that MAEs less than a second do not

imply that predicting fixation time is an easy task. It could possibly result from the

small range of the ground truth values, especially with many zeros. Instead, we found

34

that it is hard to predict fixation time since with the best model we have, the prediction

R2(coefficient of determination) is 0.21. In other words, our model explains 21% of the

variance in fixation time.

RQ2: How is gaze distributed on different positions in a grid-based interface? Figure

3.6 (drawn based on the mixed-effect logistic regression model; no significant interaction

effects) illustrates user gaze behavior in a grid. It supports the F-pattern hypothesis,

instead of center effect. Note that the fixation probability between either the first row

and second row or the first column and second column is not significantly different.

However, both the third row and third column have a significant drop (p ≈ 0). Particu-

larly, we omit the last column (index 7) because of data collection problem. The Tobbi

eye tracker has relatively smaller screen size which leaves part of the movie card in the

last column out of view. This however does not affect the conclusion for this research

question. More interestingly, we found that for all positions dwell time is positively

associated with fixation probability and when reaching 60 seconds, different positions

on average have a very high probability (> 0.80) of being fixated.

Figure 3.6: Fitted probabilities for different positions and the effects plot of position
feature and dwell time in predicting whether a displayed movie is fixated using logistic
regression. No significant interaction is found.

RQ3: How does gaze prediction accuracy vary for different tasks or modes of usage?

From Figure 3.7, we see that Task 3 – finding ten movies for self – has the best accuracy

in predicting fixation probability (AUC = 0.842, p ≈ 0). Since more data is collected

35

for Task 3, it partially explains the accuracy advantage. Another possible explanation is

that the process postulated by HMM particularly fits better to subjects’ gaze behavior

when engaging in this task. On contrary, as shown in Figure 3.8, the accuracy suffers

most in predicting fixation time for the finding-movies-for-children task (MAE = 0.340,

p = 2.92e−08). Subjects’ gaze behavior shows substantial difference in this task from the

video-recorded eye movements. Their fixations are shorter and more scattered, probably

because subjects’ searching strategy changed to coarser-level information scanning since

most of the displayed items are not relevant anymore. Note that the better accuracy

(p ≈ 0) for Task 4 might just result from low variance in the data because we may

not have enough data points for it. The general conclusion is that user gaze behavior

is different in different usage modes and collecting and training on a specific task is

better, especially for system designers who have knowledge about the main task that

their users are engaged in.

Figure 3.7: AUC boxplots of the best model et:eyeTrackingHmm in predicting fixation
probability for the different tasks.

3.6 Discussion

Our gaze prediction techniques imply two direct practical applications in recommender

systems. First, they could be used to improve recommendation freshness. We can

predict which items the user has paid attention to repeatedly without action, and replace

those items with new recommendations. Second, they could be used to remove potential

position bias in preference modeling with implicit feedback [73]. We have tried to

directly use the predicted fixation probability to weigh the click-through observations

36

Figure 3.8: MAE boxplots of the best model et:linearModelActionDist in predicting
fixation time for the different tasks.

in a matrix factorization model and achieved some accuracy improvement in predicting

clicks under certain conditions. It does not always work because position bias is usually

confounded with the typical relevance or preference of items shown at that position [63].

It is not straightforward to disentangle those confounding factors. A unified model on

both gaze and preference may be necessary instead of simple weighting.

37

Table 3.1: Different models for the gaze prediction problem, in which bl denotes baseline,
ub denotes training only on user browsing data (or training without fixation) and et
denotes training on eye tracking data (or training with fixation) as well.

Model
Model descriptions. Some depend on ex-
ample action sequences a and b (nonzeros
indicate the action position indices and 0
denotes no action)
Action sequence a: 0 0 2 0 4 0 3 0 0 0 0
Action sequence b: 2 0 3 4 0 0 0 2 0 0 0

bl:simpleActionStats (sim-
ple action statistics)

Based on simple action statistics, in which page
dwell time is distributed among the r∗c positions
proportionate to the frequency of actions on that
position from user action logs. They are used in
predicting both fixation probability and fixation
time.

ub:exactActionHmm (ex-
act action approximation)

a does not contribute on the estimation of α,
because it starts with no action. b counts once
for initiating from position 2. a does not con-
tribute on the estimation of T because there is
no action transition from a non-zero position to
another non-zero position. b counts once for the
transition from position 3 to position 4.

ub:truncActionHmm
(truncated action approxima-
tion)

After removing zeros, a will count for initiating
from position 2 and transition from 2 to 4 and
from 4 to 3 even though that is not exactly what
have happened.

ub:RestExactActionHmm Re-estimating using Expectation Maximization
(EM, [101]) algorithm with exactActionHmm as
initial values.

ub:RestTruncActionHmm Re-estimating using EM algorithm with trun-
cActionHmm as initial values.

et:linearModel logistic regression model for predicting fixation
probability or hurdle linear model for predicting
fixation time; 1/minActionDist feature is not
used

et:linearModelActionDist same as above except that 1/minActionDist fea-
ture is used

et:eyeTrackingHmm α, T and E are estimated by Maximum Likeli-
hood Estimation.

Chapter 4

Interpreting User Inaction

Feedback

4.1 Introduction

Imagine one of your friends asked for a restaurant recommendation. You told her about

a sushi restaurant nearby and she did not end up going there in the next week. What

can we say about her preferences for restaurants and the reason why she did not go?

And, if she comes for more recommendations after a week, would you recommend the

same restaurant again to her? In the beginning you might ask her for a reason, but as

time goes by, you might be able to learn that if she crinkled her nose and it was the

second time you recommended the restaurant, she did not like the recommendation and

you’d better stop recommending that one. On the other hand, if she looked upwards

trying to remember and it was the first time you recommended, you might want to

recommend it again since it is possible that she is interested but did not pay enough

attention.

This type of scenarios happens similarly in online recommender systems, where users

systematically browse items and decide to do something or not with the recommenda-

tions. In a typical online recommender interface, e.g., the interface of Netflix, Amazon,

or Youtube, grids or lists of recommendations are displayed to users once per page view.

If users rate or consume (e.g., watch or purchase) one of the items, the system learns

from this explicit evaluative rating feedback or implicit behavioral action feedback to

38

39

make better future recommendations. For example, this feedback can be incorporated

into (contextual) preference models to estimate what users prefer in general or in that

specific context [18, 10]. However, among all that have been displayed, the majority

of recommendations do not elicit any actions from users. We refer to this case as user

inaction.

Intuitively, displaying recommendations triggered by user browsing affects user per-

ception and experience with the system, and this should include both action and inac-

tion. Just as actions provide feedback about user preferences, so do inactions, and this

should be accounted for in the (contextual) preference models. For instance, a recom-

mender that keeps recommending the same item again and again while ignoring user

inaction feedback might not engage the user. On the other hand, a recommender that

forgets what has been shown and keeps changing its recommendations based on user

(in)action feedback could be confusing when the user is not able to retrieve a previously

displayed and interesting recommendation, which the user has not yet had a chance to

further explore.

Prior work in recommender systems has mainly focused on studying action rather

than inaction [72], partially because inaction data is more ambiguous than action: in-

action can (just like action) represent a deliberate decision, but can also result from

not enough attention. Moreover, to understand the reasons for inaction, we need access

to real users and their browsing activity data to better understand what reasons there

are for inaction, and to build models to predict the type of inaction. With access to a

live movie recommender system, we set out to answer the following research questions

regarding user inaction by deploying a field survey about items not acted upon, ana-

lyzing and modeling the survey responses combined with a year of user browsing and

interaction logs.

• RQ1: What are the different categories of reasons for user inaction?

• RQ2: How do different categories of user inaction affect user future recommen-

dation preferences for items not acted upon?

• RQ3: How well can we infer or classify the categories of user inaction from user

log data?

40

• RQ4: Can we improve recommender systems utilizing a user inaction model based

on our earlier findings?

To answer RQ1, we examined several behavioral decision making theories (notably,

Decision Field Theory by Busemeyer et al. [75] and the ECHO model by Guo et al.

[78]) to come up with seven major categories of reasons for user inaction to drive our

field survey design. In answering RQ2, we found that users demonstrated significantly

different preferences regarding the future recommendation of inaction items that belong

to different inaction categories. We then moved to RQ3, for which we investigated

factors from user log data that might be predictive for inferring the category or class

of the inaction recommendation. Among the significantly predictive factors, we observe

some interesting but intuitive effects on the inaction class probabilities that we can

infer. Finally, we have some evidence for RQ4, showing that taking account of the

best inaction model’s output, we can improve user action prediction substantially and

potentially the timing of the recommendation, e.g., delaying the recommendation to the

next session according to the predicted probability of being interesting in future but not

now for a previously displayed inaction recommendation.

Together our results show that user inaction is important to understand before

making decisions on the future recommendation strategies of previously displayed items

and the categories of user inaction can to some extend be inferred from user log data

which can be further used to improve recommendations. In what follows we will first

discuss related work, before discussing in detail the methods we used to answer our four

research questions.

4.2 Related Work

Classical collaborative filtering algorithms are widely used in recommender systems,

e.g., matrix factorization techniques [18]. These techniques can be applied on user

explicit rating feedback data, e.g., using the factorization model to fit the values of the

observed ratings and generate predictions for other unobserved user-item pairs. They

can also be applied on user implicit feedback data, for instance, by treating the values of

the observed acted-upon (e.g., purchased, watched) items of a user as ones while other

unobserved items as zeros [72]. These values are, however, associated with uncertainty

41

scores to represent that those feedbacks are not explicitly given by users and hence

inherently uncertain.

Nowadays, more and more researchers and practitioners in recommender systems

recognize that the interpretation of unobserved user-item pairs can be more complex

because of the additional factor of whether and how items have been displayed to the user

previously. Yang et al. [103] proposed the model of collaborative competitive filtering to

reflect the fact that users make a decision of picking and acting on one item taking into

account the competition of other context items displayed together. As one modeling

approach, the work switches from using independent binomial model (through logistic

loss) to using mutually exclusive multinomial model (through softmax loss). Lee et al.

[104] studied how to estimate and utilize discounting functions of previous impressions

(displays) to improve the conversion rate of recommendations, i.e., based on how many

times an item had been displayed and the last time the item was displayed to weight

(down weight in the work because of the hypothesis that inaction tends to be negative

feedback) the normal recommendation score of the item. This is similar to the cycling

approach of manipulating top-N item lists proposed by us [105] which demonstrated

an effect of increased user engagement, although we also observed negatively affected

subjective user perception because of this manipulation.

The idea of utilizing binary (displayed and action or displayed but inaction) implicit

feedback is more studied in information retrieval (IR) where one of the key tasks is

to estimate the click-through rate (CTR) of a URL with respect to a search query to

approximate or improve the search results quality. Joachims et al. [58] examined the

reliability of this kind of feedback generated from click-through data using eye tracking

and explicit relevance judgment. They concluded that clicks are informative but have

the position bias, because of the search results’ presentation in a list layout. Following

these findings, various user attention and browsing models are proposed to account for

the bias in learning algorithms [59, 60, 61, 62] for CTR estimation in IR. Recommender

systems that rely on implicit feedback [72] could suffer from position bias as well, as

demonstrated by Hofmann et al. [73] in simulated experiments. They examined this bias

using different click models and showed how bias following these models would affect the

outcome of recommender system offline evaluation based on implicit feedback data. The

user browsing model could be substantially different for recommender systems compared

42

with information retrieval because modern recommender interfaces are typically grid-

based, for which we [106] started collecting eye tracking data and modeling user visual

attention.

Decision making researchers have been developing different theories for explaining

decision making processes, which are generally divided into normative vs. behavioral

models [74]. Normative theories theorize about optimal, often prescriptive and log-

ical/rational approaches, while behavioral theories focus on describing actual human

decision making behaviors often deviating from normative models. We take the per-

spective of behavioral decision making here because we want to have a better under-

standing of what actually happens in people’s mind while they are looking at a page

of recommendations, not the optimal ways of browsing a set of recommendations. Two

fundamental properties of human decision making have to been taken into account in

order to be valid as a theory for explaining human decision making behaviors: deter-

minism vs. probabilism (variability of preferences), statics versus dynamics (preference

strength and deliberation time) [75]. Decision field theory (DFT) [75, 76] is a theory

that takes into account both aspects and has been shown to account for many prominent

behavioral decision phenomena, such as for example context effects in which an addi-

tional third alternative influences the relative preference of two other alternatives (e.g.,

the similarity effect, compromise effect, and attraction effect). The theory postulates a

temporal comparative mental decision process when faced with several options and the

accumulative preference of each option (called valence) dynamically changes while the

decision maker is paying attention to different aspects of the options that are important

for the decision. Once the valence reaches certain threshold, a decision will be made,

i.e., it is observed that one of the options is chosen. DFT provides a framework for us to

formalize the attentional and competitive factors that might affect user behaviors seeing

a page of recommendations. Other similar theories, such as the ECHO model [78], ex-

tend this work with a special contributing factor, called the external driver, representing

the goal to make a decision. It suggests that context, tasks, and goals influence atten-

tional processes in a dynamic way while users are browsing a page of recommendations.

What users attend to (or not) reflects how they compare between options and part of

the mental decision processes. In other words, action and inaction tells us more about

the underlying preferences and might allow to improve recommendations when modeled

43

and taken into account.

Recommender systems can be evaluated with offline metrics and online experi-

ments. Widely used offline metrics [3] include Precision, Recall, Mean Average Pre-

cision (MAP), Area Under the ROC Curve (AUC), Mean Average Error (MAE), and

Root Mean Squared Error (RMSE). Unfortunately, these offline metrics have to make

assumptions about online environments which mostly are not true, e.g., assuming rec-

ommendation is a static ranking task to best recover or predict what users do in a

held-out (future) part of the observed data sets. These metrics are limited because,

e.g., they cannot capture the dynamic interactive nature of how a recommender system

is being perceived and used by people, like browsing page by page, going back and forth

to compare or get more information to make decisions. As pointed out by McNee et

al. [81], offline recommendation accuracy on its own often is not a sufficient indicator

of recommendation quality, and further work by Knijnenburg et al. [83] and Pu et al.

[86] proposed user-centric frameworks and evaluation metrics to answer a rich set of

questions around user experience in recommender systems.

Inspired by the theories of behavioral decision making and following the user-centric

approach, we set out to interpret user inaction in recommender systems from the per-

spective of understanding and improving user experience. Different from previous work

utilizing item displays (or impressions) to improve recommender systems, our work first

focuses on interpretation, i.e., developing a specific model for why users do or do not

interact with recommendations and further utilize this model to improve, so that when

we do see improvement, we can better explain why it does and how it could behave in

real systems from a user’s perspective.

4.3 Data Collection

We collected user inaction survey data in the MovieLens system to answer our research

questions. In order to collect survey data on user inaction, we summarized seven ma-

jor categories of reasons for user inaction according to the postulated temporal decision

making process from Decision Field Theory (DFT), [76], adapted to better fit the specific

domain of the system. People normally do not watch most movies multiple times, i.e.,

the re-consumption of movies could greatly affect whether users interact with a movie

44

recommendation or not. Some domains, however, see frequent re-consumption, e.g.,

online grocery stores or music streaming services. From another perspective, whether

a user has watched (or consumed) the movie before suggests that the user has a cer-

tain (highest especially right after the consumption) level of familiarity. A potentially

important factor that contributes user inaction is lack of attention, as suggested by

our eye tracking work [106] on grid-based interfaces and our survey in this work also

supports this observation. When a number of recommendations are displayed in one

page view, users probably will not pay attention to all of them especially when the item

is displayed in a non-prominent position, e.g., the right bottom corner in a grid-based

interface. Even if a user does pay attention to an item, the user might prefer other

alternatives that are displayed together or the user needs more information about the

item to make a decision or just to find out whether it is actually less preferred compared

with others. It could also be that the recommendation does not fit the user’s movie

taste, or that the user is looking for movies to watch with others so that additional

constraints must be met. These scenarios reflect the effect of context described by the

ECHO model [78].

We designed our field survey to be dynamically adaptive with multiple steps of

questions for users to answer. Since our inaction interpretation derives from decision

making processes, we excluded scenarios where users are not obviously making decisions

based on the recommendations, e.g., rating a previously watched movie or just browsing

movie information. In addition, depending on previous answers to some of our survey

questions, certain questions may not make sense. For example, if a user did not notice

a recommendation, it would not be a valid follow-up question to ask why the user did

not interact with it.

When a user goes to the explore page with 24 top picks and then transitions away

from that page, we randomly picked one movie that was displayed on that page but not

acted upon by the user (action includes rating, clicking, and adding into the wishlist,

but excludes mouse hovering). If conditions to survey the user were satisfied (the user

was asked fewer than four times before, and the time of last asking was more than one

week ago), a survey was popped up to ask the user the following questions organized

according to the flow shown in Figure 4.1. The order of the options to each question was

randomly flipped (excluding the free text box) to avoid position bias. The short names

45

in the parentheses were not displayed but are included here for reference purposes. They

also represent how multiple options are sometimes merged to make it easier for modeling,

prediction and analysis (i.e., NotNoticed in “notice”, PastMonth/PastYear/YearsAgo

in “when”, Maybe in “future”).

reason
N=5665

end

RateWatched (11.2%)
JustBrowse (7.8%)
Other (1.5%)

Watched (23.1%)

Noticed

FindForSelf (36.6%)
FindWithOthers (21.0%)
BuildList (21.6%)

NotNoticed

end

Noticed (60.7%)
NotNoticed (39.3%)

notice
N=4120

NeverHeardOf (29.2%)
HeardOf (13.4%)
SomeWhatFamiliar (20.6%)
VeryFamiliar (13.8%)

skip
N=1808

when
N=885

future
N=3715

PastMonth (2.8%)
PastYear (11.7%)
YearsAgo (73.1%)
DidNotRemember (12.3%)

WouldNotEnjoy (12.6%)
OthersBetter (20.4%)
NotNow (39.1%)
ExploreLater (14.6%)
DecidedToWatch
(12.5%)
Other (0.4%)

familiarity
N=3945inaction

Figure 4.1: The flow of the inaction survey illustrating how the questions were asked. N
is the number of responses to the corresponding question. The ratios are the proportions
of options within those response.

• What was the primary reason you came to the MovieLens Top Picks today?(reason)

– to find a movie to watch now or soon, probably by myself (FindForSelf)

– to find a movie to watch now or soon, probably with someone else (Find-

WithOthers)

– to build a list of movies to watch in the future (BuildList)

– to browse movies without any specific plan to watch any of them in the near

future (JustBrowse)

46

– to find movies I’ve already seen to rate them (RateWatched)

– other (free text) (FreeText)

• Did you happen to notice whether we displayed a movie recommendation XXX

(1993) in the previous Top Picks page? (notice)

– Yes, I noticed it (Noticed)

– No, I didn’t notice this movie being recommended (NotNoticed)

– I don’t think it was displayed, but I would have noticed it (NotNoticed)

• How familiar are you with this movie XXX(1933)? (familiarity)

– Never heard of it (NeverHeardOf)

– Heard of its name but don’t know what it’s about (HeardOf)

– Somewhat familiar with it but have not watched it (SomeWhatFamiliar)

– Very familiar with it but have not watched it (VeryFamiliar)

– I’ve watched it (Watched)

• When did you watch this movie XXX(1933) last time? (when)

– Past week (PastMonth)

– Past month (PastMonth)

– 1-6 months (PastYear)

– 6-12 months (PastYear)

– 1-3 years (YearsAgo)

– > 3 years ago (YearsAgo)

– Don’t remember (DidNotRemember)

• We noticed that you didn’t interact with the card for movie XXXX (i.e., you

didn’t wishlist, or click to see details)? Which best describes the reason why you

didn’t? (skip)

– I already decided that I might watch it. (DecidedToWatch)

47

– I was planning to click on this movie to explore it later; I just hadn’t done

so yet. (ExploreLater)

– There were other movies recommended that seemed more interesting to me

at the moment. (OthersBetter)

– While I might be interested in this movie in the future, it isn’t what I’m

looking for right now. (NotNow)

– I’m pretty sure I wouldn’t enjoy this movie. (WouldNotEnjoy)

– Other (free text) (FreeText)

• Should MovieLens continue recommending this movie to you in the future (until

you rate it, of course)? (future)

– Yes, definitely (Definitely)

– Sometimes, but not always (Maybe)

– Not now, but it would be nice to see it recommended again after some weeks

or months (Maybe)

– No, I’d rather get other recommendations (RatherNot)

From the survey question design, the seven possible categories of user inaction are

labeled as NotNoticed, WouldNotEnjoy, NotNow, OthersBetter, ExploreLater, Decided-

ToWatch, Watched, which integrates the questions of “notice”, “familiarity” and “skip”

(note that Watched here only includes those inaction items that are Noticed). We

launched the survey on July 28, 2017 and collected user responses until March 21, 2018.

3,206 users gave 3,923 responses for which the user inaction category can be determined.

Along with the survey data, we also have access to user interaction logs in the system

from Jan. 1, 2017 to March 21, 2018. These include 53M movie displays browsed by

25K users with information regarding how they were displayed (e.g., position in the

interface and how long the page dwell time was etc.), 1.6M ratings, 369K clicks, 167K

wishlist additions, 2.8M hovers (hovering is only logged when the accumulative hovering

time on the movie card is longer than one second within the page view) by those users.

48

4.4 Interpreting User Inaction

RQ1: What are the different categories of reasons for user inaction? Figure 4.1 illus-

trates the distribution of user responses to the survey questions. By focusing on the

seven possible inaction categories here, we found that 38.6% of inaction recommenda-

tions were because of lacking attention (NotNoticed). 18.2% were because of lacking

the right context (NotNow). 14.6% had already been consumed by the users (Watched),

which were still recommended by the system because of lacking consumption records

of the users. 9.5% were because of the effects of competition (OthersBetter). 5.8% did

not match the user’s taste (WouldNotEnjoy). 6.9% needed exploration later for more

information to make a decision (ExploreLater). 5.8% had already reached the user’s

acceptance decision (DecidedToWatch) after that page view although it is an inaction

recommendation. Lastly, outside of the options we provided for the “skip” question,

we had 0.25% free-text responses. These numbers suggest that simply treating inac-

tion as a signal of negative feedback (or simply ignoring the inaction feedback) could

be problematic. Particularly, it points out that the effects of the two most important

inaction factors – attention and context – need to be incorporated into the design of

recommender models or the presentation of top-N recommendations.

4.5 Future Recommendation

In this section, we answer “RQ2: How do different categories of user inaction affect user

future recommendation preference?” to demonstrate the significance of distinguishing

different categories of user inaction. Figure 4.2 illustrates the distribution of future rec-

ommendation preferences for different user inaction categories. We conducted pairwise

comparisons through six ordinal regression (specifically, mixed-effects cumulative link)

models, assuming that “future” question has three ordinal levels: RatherNot, Maybe,

Definitely (as mentioned previously, MaybeLater and Sometimes are merged into one

level: Maybe), treating “inaction” as the fixed effect and user ID as the random in-

tercept, varying the baseline condition of “inaction”. To control false discovery, we

employed Bonferroni correction [107] (effective significance p-value threshold is 0.0083;

note the number of models built is six). The overall conclusion is that future recommen-

dation preference can be statistically and substantially different for different inaction

49

categories. Specifically, there is a preferred order of future recommendation for the seven

inaction categories. From the least to the most preferred in future recommendation, the

order of inaction categories is WouldNotEnjoy < Watched < NotNotice < NotNow or

Others Better < ExploreLater or DecidedToWatch. Note that movies with an inaction

reason of DecidedToWatch are similarly preferred as ExploreLater, and users prefer be-

ing recommended inaction movies that they did not notice over ones that they noticed

but had already watched.

As described in the survey design section, we also asked questions regarding “reason”

(specific contexts), “familiarity”, and “when” to watch. Figure 4.1 shows that the

majority of user visits to the explore page top-picks are for finding movies to watch,

although the context of finding the movie to watch may not be only for the user (i.e.,

with others) or for immediate consumption.

We analyzed how “reason”, “familiarity”, “when” to watch might affect users’ fu-

ture recommendation preference by building similar ordinal regression models. We

found that FindWithOthers has a significant negative effect on future recommendation

preference compared with FindForSelf (coef.=-0.181, std.=0.090, p=0.044). It suggests

that when users come to the recommender to find a movie to watch with others, the

movies that they browse generally do not reflect their own preference and hence users

prefer the system not to recommend these movies in future. For “familiarity”, we found

that Watched has a significant negative effect on future recommendation preference

compared with not Watched yet (p<0.001) but we did not see significant differences

among the cases from NeverHeardOf to VeryFamiliar. For different “when” options,

we did not see significant differences either. However, we observe a trend that suggests

users may be more likely to want to see a watched movie recommended in future when

it was watched in the past year compared with the one watched either very recently or

very far away in time.

4.6 Classifying User Inaction

The previous section shows that different categories of user inaction significantly affect

the future recommendation preference of users. However, we are not able to gather

data about user inaction on each of the displayed recommendations in the system. One

50

63%

42%

30%

9%

11%

1%

4%

5%

19%

23%

27%

25%

51%

65%

32%

39%

47%

64%

64%

48%

32%

FutureRecommendation

100 50 0 50 100

WouldNotEnjoy

Watched

NotNoticed

NotNow

OthersBetter

ExploreLater

DecidedToWatch

Percentage

Response RatherNot Maybe Definitely

Figure 4.2: The distribution of future recommendation preference for different user
inaction categories. The order of preference (significant after Bonferroni correction,
p<0083) is WouldNotEnjoy < Watched < NotNotice < NotNow or Others Better <
ExploreLater or DecidedToWatch.

possible alternative is to build classification models to predict, which is what our RQ3

is about: How well can we infer or classify the categories of user inaction? In order

to answer this research question, we temporally split the survey data and system logs

into two subsets. We used the subset of survey data and system logs before Feb. 1,

2018 (i.e., Jan. 1, 2017 to Jan. 31, 2018) as the training data (around 90% of system

logs, 80% of survey data). We used the remaining subset of survey data and system

logs (i.e., Feb. 1, 2018 to Mar. 21, 2018) as the testing or evaluation data.

The problem of inferring the category of user inaction can be formalized as a 7-class

classification problem. Note that this is not predicting user inaction before a page of

recommendations are displayed, but is inferring user inaction reason after observing

how a page of recommendations are displayed and interacted with by the user. This

classification model can be used for recommendation when we want to know whether

we should re-recommend an item that has been previously displayed to the user before,

which will be described in the last section. For now, we focus on answering RQ3.

We recognize that it might be helpful to first predict potential actions users might

51

Table 4.1: The confusion matrix of the inaction model (rows are the predicted classes
and columns are the actual classes) and the accuracy in terms of AUC for each class
(binary classification of one vs. others using the probabilistic output of the 7-class
classification model).

Class Watched OthersBetter DecidedToWatch NotNoticed NotNow WouldNotEnjoy ExploreLater AUC

Watched 96 8 4 36 8 7 4 0.799

OthersBetter 0 0 0 0 0 0 0 0.720

DecidedToWatch 0 0 0 0 0 0 0 0.702

NotNoticed 59 29 21 217 80 22 27 0.696

NotNow 4 14 9 10 16 3 4 0.676

WouldNotEnjoy 0 0 0 0 0 0 0 0.621

ExploreLater 0 0 0 0 0 0 0 0.605

Table 4.2: Three possible ways to utilize the user inaction model in recommender sys-
tems. MF denotes Matrix Factorization and FM denotes Factorization Machine.

Goal Model Metric

Rating prediction
(regression,
L2-norm loss)

MF: user ID + item ID
MAE=0.912
RMSE=1.11

FM: user ID + item ID
+ (7-class predicted
probabilities)

MAE=0.950
RMSE=1.17

Action prediction
(whether action or
not when displayed;
binary classification,
logistic loss)

MF: user ID + item ID AUC=0.774
FM:
user ID + item ID
+ (7-class predicted
probabilities)

AUC=0.787

Recommendation
timing

predicted NotNow
probability vs. time
taken for action

Pearson=0.0264
p<0.001***

predicted NotNow
probability vs. whether
acted in a different
session

AUC=0.562

make on recommendations before inferring user inaction. For instance, estimated prob-

ability of displaying (predDisplay) a movie by the system might signify the probability

of ExploreLater. Estimated user preference (predRating) might signify the probability

of WouldNotEnjoy. Estimated probability of rating a movie might (predRate) signify

the probability of Watched. Estimated probability of clicking a movie (predClick) might

signify the probability of ExploreLater. Lastly, estimated probability of adding into the

wishlist (predWishlist) might signify the probability of DecidedToWatch. Therefore, we

first built five models (referred to as sub-models) to generate these predictions through

the classical matrix factorization technique [18] (latent factor dimension is 32). These

action models (except rating value prediction which is a regression problem) only have

positive items observed (i.e., what movies were displayed, rated, clicked or added) for

52

which we need to sample negative items. For each item that was acted upon, we ran-

domly sampled 2K items from the whole item space (≈45K) after which the classical

matrix factorization technique can be applied (rating prediction uses L2-norm loss while

action prediction uses binary logistic loss). The accuracy of these models is MAE=1.24,

RMSE=1.51 for rating value prediction, Precision@1=0.512, 0.166, 0.018, 0.013 for pre-

dicting the probabilities of being displayed, rated, clicked, wishlisted respectively. We

see that predicting rating, whether to display or rate are easier tasks than predicting

whether to click or add into the wishlist in the system.

With the pre-built models, after systematically examining the factors that are po-

tentially predictive, we summarized the following list of predictors.

• item level

– popularity of the movie, i.e., the number of ratings the movie has in the

system

– predicted rating, likeliness of displaying, rating, clicking and adding into the

wishlist from the sub-models.

– position where the item was displayed

• page level

– user dwell time on the page

– the ratio of action (used to refer to either clicking, rating or adding into the

wishlist except hovering) and hovering on the 24 movies (i.e., the number of

acted movies divided by 24)

– the min, max, median and mean of rating value, action and displaying prob-

ability predictions for the page of movies

– the closest acted item’s position in the grid, its Euclidean distance from the

inaction movie (inversed), rating value and action predictions, if there is any

action on the page

– the min, max, median and mean of the similarities of the other movies dis-

played together with the inaction movie (these are cosine similarities com-

puted on the movie latent factor representation from the rating value matrix

factorization model)

53

• session level

– the length of the session in seconds and how many movies were displayed

before the page view

– the ratio of hovering, action on the displayed movies before the page view

– how many times the inaction movie has been shown in the session before the

page view (this is further separated into two types of displays: displays on

the front page and displays on the explore page).

• user level

– the tenure of the user in the system in seconds and how many movies were

displayed to the user before the page view

– the ratio of hovering, action which includes either clicking, rating or adding

into the wishlist except hovering on the displayed movies before the page

view. Rating is further divided into lowRating(<4.0) vs. highRating(>=4.0).

– how many times the inaction movie has been shown across sessions in the

user history before the page view

The inaction model serves two purposes in this work: 1) understanding what predic-

tors and how these predictors help infer the inaction categories and 2) achieving usable

accuracy so that a recommendation algorithm can utilize its output to improve future

predictions. Therefore, we employed two types of techniques respectively for these two

purposes. First, for the purpose of interpretation, we employed multinomial regression

to both test the significance of the predictors and their effects’ signs and sizes. Second,

to achieve the best classification accuracy, we used Gradient Boosted Decision Tree

(GBDT, boosted ensemble of decision trees) model [24] and the popular implementa-

tion: xgboost [108]. This implementation supports sparsity regularization (similar to

the technique of LASSO [109]) which enables automatic feature selection by tuning

the regularization strength parameter α. After tuning, we found the best parameter

set to be: max depth = 1 (the maximum depth of each tree), num trees = 51 (total

number of boosted trees), α = 5.0 (L1-norm based sparsity regularization), λ = 1.0 (L2-

norm based regularization). The best model accuracy (7-class classification accuracy) is

54

48.5%, which is significantly better (8.6% accuracy boost) than the naive baseline of al-

ways predicting the majority class (p=0.0001 based on exact binomial test; the number

of testing survey responses is 678; the majority class NotNoticed occupies 39.9%).

Table 4.1 shows the confusion matrix and the accuracy in terms of AUC for each class

(binary classification of one vs. others using the output of the best 7-class classification

model) of the inaction model. It shows that the model is struggling in differentiating

other classes from the majority class NotNoticed. However, the probability scores pre-

dicted by the model still have certain capabilities to different each class from others as

suggested by the AUC metric, specifically the model performs best in predicting for the

classes of Watched, OthersBetter, DecidedToWatch but performs worst for the classes

of ExploreLater, WouldNotEnjoy. Generally, inferring inaction categories is a hard task.

Because of the use of the sparsity regularization, GBDT model can provide non-zero-

importance predictors after regularization. The effects of non-zero-importance predic-

tors on inaction inference (from one multinomial regression model for interpretability)

are listed in Table 4.3. Note that the coefficients in Table 4.3 are the log odd-ratio

change of the corresponding category compared with NotNoticed. As two examples,

• The higher predicted probability of a user to rate a movie, the more likely that

the user has watched the movie before. It suggests that predicting whether an

item will be rated by a user in the system can approximate the user’s familiarity

on the item. (the cell in predRate & Watched)

• The higher the predWishlist is, the more likely the reason for inaction is Decid-

edToWatch. It suggests that predicting whether a movie will be added into the

wishlist by a user in the system can approximate the likeliness of a user deciding

to watch the movie, which is consistent with the design goal of the wishlist feature

of the system.

As shown in Table 4.3, the predicted action probabilities can be useful signals in

inferring the reasons of inaction for displayed recommendations. Although the possible

actions that users can do in different systems vary, we see many interfaces in modern

recommender systems such as Netflix, Youtube support similar actions as rating, clicking

or adding into a wishlist. Therefore, these findings could potentially generalize across

multiple platforms. However, future research is necessary to further validate this.

55

4.7 Improve Recommendation

In this section, we answer RQ4: Can we improve recommender systems utilizing the

user inaction model? There are three possible ways of utilizing the inaction model to

improve recommender systems.

• Preference estimation. Can we improve rating prediction accuracy by utilizing the

inaction model output?

• Action prediction. Can we improve action prediction accuracy by utilizing the

inaction model output?

• Recommendation timing. Can we do better in terms of when to recommend by

utilizing the predicted probabilities of NotNow from the inaction model?

We use similar training and testing data sets as previous sections to answer these

questions. However, we only took part of the system logs because it is expensive to

extract predicted inaction category probabilities for all the 53M movie displays. To put

these models into real systems requires amortizing the computational costs of running

the additional models. For each of the 25K users, we take ten page views and their user

interactions before Feb. 01, 2018 as the training set (176K ratings, 4.4M movie displays)

and take one page view and their interactions on and after Feb. 01, 2018 as the testing

set (7K ratings, 135K movie displays). Table 4.2 shows the results of testing the three

possible ways of utilizing user inaction model output. The rationale of these approaches

is that if we want to know whether or when we should recommend an item to a user,

we first check whether we have displayed this item to the user before and generate

predicted inaction probabilities as input to guide our decision. We used the technique

of Factorization Machine [110] (FM) to incorporate the additional inputs of predicted

inaction category probabilities. When an item was never displayed before, we use a

default values of zeros as the additional input to FM. For both Matrix Factorization

(MF) [18] and FM, we used 32 latent dimensions. To answer the recommendation timing

question, we select inaction items that were later acted upon by users and analyze the

Pearson correlation between the predicted NotNow probability of each inaction item

and the time it takes for the user to act on it later. We also use this predicted NotNow

56

probability to predict whether the action was in a different session measured in terms

of AUC.

As illustrated in Table 4.2, we did not see improvement for rating prediction in terms

of MAE or RMSE, i.e., estimating user preference, but saw substantial improvement

in action prediction in terms AUC (predicting whether there will be any action on an

item if it is recommended). It suggests that the inaction model can potentially improve

recommender systems that targets maximizing user action (user engagement) in the

system. We also observe that the predicted NowNow probability of the inaction model

may help the system make the decision of delaying the recommendation of an inaction

item to the next session or later in time.

4.8 Discussion

In online recommender systems, there are many possibilities to explain user inaction

on recommendations. In this work, we summarized and collected data on seven major

categories of them inspired by the psychology literature of behavioral decision making

and found they significantly affect user future recommendation preferences on inaction

items. In recommender systems literature, inaction or missing observations is usually

treated as negative feedback [104, 72, 111]. Our research suggests that inaction is

more complex than the assumption. For example, there is a high chance that the

cases of ExploreLater and DecidedToWatch inaction are positive user feedback. We

found attention plays a significant role in user inaction, which implies that new ways of

presenting top recommendations might be necessary to better utilize user attention.

We designed and tested models to infer user inaction so that systems can avoid

always asking users for inaction reasons. We achieved significantly better-than-random

classification accuracy especially for certain inaction categories, e.g., Watched, Others-

Better or DecidedToWatch. We found interesting predictors that signify how we might

better infer the inaction category probabilities, e.g., predicted wishlist probability signi-

fies a higher chance of DecidedToWatch and predicted being-rated probability signifies

a higher chance of Watched. Generally, we found that user inaction inference is a hard

task. However, with the advent of more accessible sensors like portable eye-tracking

57

equipments, we consider it promising further work to explore how these new measure-

ments can help better infer user inaction.

We demonstrated that the user inaction classification model we built can improve

action prediction tasks which can be used by recommender systems to maximize user

action engagement (i.e., recommending items that have the highest predicted action

probabilities). We also showed that the predicted probability of NotNow from the inac-

tion model could potentially improve recommendation timing, e.g., delaying a previously

displayed recommendation to the next session if the model predicts that this item can

only be interesting to the user in future but not now.

58

Table 4.3: Coefficients (with standard errors) of predictors from a multinomial regression
model predicting the category of user inaction. They represent the log odd-ratio change
with respect to the baseline category NotNoticed. “closest” denotes the closest item
that has an action if there is any action on the page. “row” or “col” denotes the row or
column index of the position in the grid. “Sim” denotes similarity score. “numShow”
denotes the total number of displays while “numFrontShow” denotes the total number of
front-page displays. “[action]Ratio” denotes the ratio of items having the corresponding
[action]. closetInvDist represents the inverse of the Euclidean distance between the
acted-upon item (if there is any) and the inaction item. Significance levels: *p<0.05,
p<0.01, *p<0.001.

Level Predictor WouldNotEnjoy NotNow OthersBetter ExploreLater DecidedToWatch Watched

item

predWishlist 10.912 (3.455) ** 1.249 (11.793) -0.813 (3.121) -0.052 (1.243) 4.668 (1.751) ** -7.124 (13.426)
predDisplay 3.963 (2.785) 0.058 (7.334) -3.441 (5.578) -5.332 (1.709) ** -1.402 (1.421) 5.773 (7.508)
predRating -0.244 (0.282) 0.069 (0.190) 0.699 (0.267) ** 0.160 (0.290) -0.018 (0.324) 0.238 (0.224)
predClick 0.372 (2.754) 1.974 (18.183) 3.065 (9.895) -2.920 (2.545) -0.945 (2.099) -0.238 (18.831)
predRate 5.197 (2.657) -1.875 (6.307) -5.322 (4.063) -5.501 (1.382) *** -1.602 (1.238) 16.935 (7.122) *

page

row -0.004 (0.133) -0.209 (0.088) * -0.136 (0.110) -0.139 (0.132) -0.320 (0.151) * -0.243 (0.089) **
col -0.174 (0.044) *** -0.154 (0.028) *** -0.081 (0.037) * -0.077 (0.043) -0.051 (0.048) -0.047 (0.031)
dwell 0.180 (0.072) * 0.075 (0.052) 0.099 (0.067) 0.146 (0.074) * 0.217 (0.075) ** 0.206 (0.055) ***
closestCol 0.102 (0.052) * 0.100 (0.035) ** 0.051 (0.044) 0.000 (0.051) 0.064 (0.059) -0.033 (0.037)
closestInvDist 0.002 (0.227) 0.134 (0.148) 0.395 (0.194) * 0.435 (0.220) * -0.035 (0.251) 0.385 (0.156) *
minSim -1.245 (1.117) -1.930 (0.702) ** -1.947 (0.881) * -1.002 (1.091) -2.178 (1.234) 0.663 (0.775)
medianSim -4.272 (3.216) -3.221 (1.976) -4.939 (2.671) -7.648 (3.199) * -4.333 (3.410) -4.025 (2.208)
meanSim 4.425 (4.465) 6.532 (2.692) * 9.196 (3.556) ** 9.030 (4.494) * 6.169 (4.824) 2.532 (3.140)
maxSim -3.073 (1.212) * -1.425 (0.762) -1.923 (0.983) -1.980 (1.158) -1.090 (1.299) -1.002 (0.810)
closestSim 0.621 (0.308) * 0.419 (0.214) 0.182 (0.261) -0.148 (0.321) 0.247 (0.363) 0.015 (0.221)
clickRatio -1.645 (7.072) -12.134 (4.887) * -4.474 (5.853) 1.977 (6.448) -6.812 (8.460) -24.583 (6.879) ***
ratingRatio -0.661 (1.191) 0.418 (0.831) 0.420 (0.984) 0.984 (1.176) -0.508 (1.387) -1.726 (0.800) *
lowRateRatio 6.840 (2.256) ** 3.584 (1.852) 4.497 (2.187) * 1.620 (3.055) 7.191 (3.011) * 4.603 (1.795) *
predRateMin -0.065 (0.408) -1.257 (0.767) -0.533 (1.003) -1.321 (0.369) *** -1.175 (0.241) *** 3.486 (0.795) ***
predRateMean 1.231 (1.495) -1.045 (2.689) -1.831 (2.741) -2.797 (1.072) ** -2.330 (1.017) * 7.225 (2.413) **
predRateMedian 0.714 (1.280) -1.959 (2.379) -1.800 (2.564) -2.668 (0.953) ** -2.436 (0.820) ** 8.059 (2.235) ***
predRatingMin 0.041 (0.214) -0.134 (0.122) 0.124 (0.165) 0.298 (0.230) -0.155 (0.199) 0.463 (0.274)
predRatingMean -0.536 (2.146) 1.168 (1.302) -2.417 (1.612) -2.719 (2.034) 1.620 (2.338) -1.041 (1.951)
predRatingMedian 0.600 (1.788) -0.064 (1.077) 2.860 (1.407) * 2.825 (1.726) -0.138 (1.981) 0.335 (1.511)
predRatingMax -0.368 (0.570) 0.183 (0.317) -0.159 (0.450) -0.057 (0.556) 0.132 (0.551) 0.164 (0.439)
predClickMin -0.055 (0.039) -0.243 (0.100) * 0.049 (0.118) 0.160 (0.043) *** 0.009 (0.034) 0.274 (0.108) *
predClickMean 1.272 (1.049) 1.969 (2.030) 0.688 (1.841) -1.051 (0.743) 0.056 (0.809) 0.377 (1.724)
predClickMedian 0.681 (0.493) -0.006 (1.038) 0.805 (0.894) -0.575 (0.364) -0.140 (0.408) 0.460 (0.912)
predWishlistMin -0.249 (0.060) *** 0.267 (0.129) * 0.006 (0.174) 0.022 (0.058) -0.298 (0.035) *** -0.081 (0.154)
predWishlistMax 4.412 (11.852) 13.995 (7.845) 1.154 (12.143) -5.502 (16.207) -4.041 (18.608) 1.706 (9.528)
predDisplayMin -0.102 (0.096) 0.327 (0.218) -0.692 (0.251) ** -0.066 (0.098) -0.066 (0.101) 1.049 (0.149) ***
predDisplayMean -0.197 (1.200) -0.450 (2.288) -1.284 (2.826) -1.554 (1.067) -1.181 (0.839) 5.458 (2.218) *
predDisplayMedian -0.030 (0.744) -0.145 (1.390) -0.760 (1.675) -1.065 (0.632) -1.519 (0.536) ** 3.016 (1.235) *
predDisplayMax -5.349 (7.038) -6.996 (15.833) -5.690 (18.309) -5.104 (6.797) -2.694 (4.402) 36.050 (16.626) *

session
numFrontShow 0.818 (0.252) ** 0.646 (0.168) *** 0.659 (0.209) ** 0.832 (0.237) *** 0.750 (0.253) ** 0.600 (0.191) **
lowRateRatio 14.226 (6.922) * -6.013 (4.337) -5.836 (5.772) -24.322 (5.887) *** -11.919 (7.467) -2.251 (5.417)

user

length 0.002 (0.023) 0.022 (0.016) 0.001 (0.020) -0.007 (0.023) -0.022 (0.028) -0.047 (0.017) **
numShow 0.203 (0.106) 0.299 (0.066) *** 0.253 (0.088) ** 0.251 (0.100) * 0.567 (0.111) *** -0.079 (0.095)
ratingRatio -17.097 (8.493) * 11.615 (9.645) 2.015 (10.951) 7.201 (5.728) 2.984 (3.826) 2.160 (8.145)
highRateRatio 16.444 (8.744) -12.647 (9.837) -1.533 (11.134) -6.516 (6.038) 1.408 (4.318) -0.257 (8.222)
lowRateRatio -0.556 (9.815) -5.772 (9.532) -0.386 (11.086) 10.145 (6.072) 2.154 (5.632) -2.212 (8.952)
wishlistRatio -5.888 (12.539) 3.325 (6.203) 14.435 (4.925) ** 13.525 (5.520) * 0.213 (11.142) 14.693 (4.442) ***

Chapter 5

Cycling and Serpentining of

Top-N Lists

5.1 Introduction

Recommender systems typically are optimized to produce a top-N list reflective of the

most-highly recommended items a user has not yet rated. However, there are many rea-

sons to believe that this order may not be the best order to present items to users, either

within or across sessions. First, top-N does not consider whether a recommendation has

already been displayed to the user before, that is, whether it is fresh vs. potentially

stale. Second, presenting the standard top-N list may create an experience where con-

tinued exploration results in a sense of finding ever-worse alternatives recommended.

In this work, we explore two alternatives to the standard top-N approach designed to

address these concerns. Cycling recommendations demotes recommended items after

they have been viewed several times, while promoting fresher recommendations from

the lower portions of the list. Serpentining displays a “zig-zag” order, in which the

best recommendations (i.e., the top recommendations from a rating prediction model)

are spread across several pages, offering high-quality items on each page as a user con-

tinues to explore. Cycling may happen within the same visit or across multiple visits,

which we call intra-session or inter-session cycling. Intra-session cycling creates

a more immediate and noticeable change but may cause confusion because potentially

interesting recommendations may disappear when a user goes back to the previous page.

59

60

Inter-session cycling is less likely to have this problem but may not be noticeable because

users have forgotten what they saw previously.

The high-level research question in this work is whether cycling and serpentining

– as two perspectives of re-examining top-N list – improve user experience. However,

we are not trying to optimize a particular user experience. We recognize that different

experiences may require different approaches. A situation where a site recommends

a single item cannot benefit from serpentining. A user who treats the top-N list as

a “to-do” list, taking the top item each time, would not be served well by cycling.

Rather, we want to see how these manipulations relate to user experience in the hopes

of guiding designers in adopting them, or offering them to users. Similarly to the finding

from Ziegler’s work [112] that users are willing to accept a certain loss of accuracy in

order to have more diverse recommendations, we expect that the perceived accuracy

of recommendations may get reduced because of the manipulation; however, we test

whether the accuracy reduction may be preferred in exchange for the exposure to a

broader and “fresher” set of items.

With this as the goal of our research, we look at multiple metrics and several di-

mensions of user experience. We recognize that users also have different goals, including

those who want to explore deeply and ones who simply want to find an item quickly.

For this reason, we look at (a) a variety of user activities, including engagement mea-

sures (levels of usage) and success measures (numbers of items selected) as well as (b)

a variety of self-reported reactions, including assessments of quality, freshness, useful-

ness, etc. We follow the framework proposed by Knijnenburg et al. [83] for user-centric

evaluation of recommender systems. Four components of the framework are involved:

OSA (Objective System Aspects, e.g., recommender manipulations), SSA (Subjective

System Aspects, i.e., user perceptions on different aspects of the recommender), EXP

(experience, e.g., the overall perceived usefulness or satisfaction), and INT (interaction,

i.e., user activities or behavioral data in the recommender). It leads to our research

questions RQ1-RQ3 listed below. We combine SSA, EXP, and INT measurements to

better understand user experience. As pointed out by Velsen et al. [113], interpretation

of user behavioral data is often troublesome, and they suggest triangulating objective

behavior data with subjective experience data (which is collected through surveys in

our experiment). For example, increased page views could be representative of better

61

(more) user engagement, but it could also mean that users are forced to browse more

in order to get useful recommendations. We are concerned that asking survey questions

may have an effect on users’ activities as well. Therefore, we also design another vari-

ation in addition to the above two manipulations: delayed asking vs. non-delayed

asking. For users in the delayed asking condition, we only ask them survey questions

after they joined our experiment for certain period of time (one month here) so that we

can measure user activities in a setting that is closest to the production environment of

an online recommender system for a while (which usually does not have surveys).

• RQ1: How do cycling and serpentining recommendations affect user activities?

(OSA ⇒ INT)

• RQ2: How do cycling and serpentining affect user perceptions and their overall

experience with the recommenders? (OSA ⇒ SSA and EXP)

• RQ3: How does each user perception aspect contribute to user-perceived usefulness

and overall satisfaction? (SSA ⇒ EXP)

5.2 Related Work

The cycling approach proposed above creates a distinct type of presentation-controlled

dynamic, as it controls the presentation of a recommended item and cycles it out when

it has certain exposure. We use recommender dynamic here to broadly refer to the

change in recommendations. There are many kinds of dynamics in dynamical recom-

mender systems [14]. The most classic ones model users’ temporal preference drifting

[15, 16, 17]. Rana and Jain [14] classified the dynamics of recommender systems into six

categories: temporal changes, online processing, context, novelty, serendipity, and di-

versity. We review dynamics in recommender systems from a different perspective here.

From the literature, dynamics can be achieved with two approaches: model-based and

algorithm-based. Model-based approaches include context-aware recommenders [10, 114]

and systems explicitly modeling user preference change [15, 17]. For example, in their

work on Context-Aware Recommender Systems (CARS), Adomavicius et al. [10] ex-

amined how context can be defined and used in order to create more intelligent rec-

ommendations, such as using pre-filtering and post-filtering strategies with respect to

62

contextual factors. In their classification, contexts can also be dynamic (vs. static),

because designers may find previously relevant contexts no longer useful, such as shop-

ping companion. Koren [15] proposed to track user preferences on products along the

whole time period in history data sets by explicitly postulating parameters regarding

temporal effects and successfully incorporated this idea into two popular recommender

techniques: a factorization model [18] and an item-item neighborhood model [5] to

improve preference prediction accuracy.

The second approach to achieve dynamics is through algorithms, i.e., how to find

the optimal solution for the specified model and how frequently to update the model

as new data set becomes available. As an example, matrix factorization [18] is a pop-

ular technique for recommendation, in which user preferences are modeled with latent

factors and learned from user-item interaction matrix. Recognizing that factorizing

those interaction data matrices in batch has significant delay compared with the time

of receiving feedback from users, online learning or incremental techniques have been

proposed and tested for real-time model updating [115, 116]. Most of machine learning

based approaches to recommender systems have the incremental processing capabil-

ity. For example, learning-to-rank [33] techniques directly learn the relative ranking

of items to a specific user from data, whose dynamics critically depend on the updat-

ing latency of the ranking models, i.e., how quickly new available information is fed

into the algorithm. Many recommender systems have both model and algorithm based

dynamic perspectives, such as Markov Decision Processes (MDP) based recommenders

[36] and contextual bandits [117] in computational advertising. In these techniques,

recommendation problem is modeled as a dynamic decision making policy for an agent,

and algorithms are designed to search the optimal solutions based on partially available

and incrementally gained information such as “like” or “dislike” feedback from users.

However, there is a need for more systematic study of recommender models’ and

algorithms’ effects on user perceptions and experience. Change in recommendations

is a good thing when users perceive more freshness and less boredom, but also could

be confusing when changes are highly unexpected or overly dramatic. In other words,

several psychological factors (that may not be directly observable) may be involved in

user’s decision making and, therefore, a systematic user-centered approach is needed

to evaluate their potential involvement. Users’ exposure to recommendations can also

63

be studied by analyzing user actions, following the approaches and ideas from the sci-

ence of persuasion and marketing. As Tellis’s [118] work showed, advertising exposure

has a nonlinear effect, in other words, repetitive exposure is necessary but has dimin-

ishing gain. Their and others’ results [119] suggested that two to three ad exposures

might be optimum. As discussed by Petty and Cacioppo [120] and also suggested by

their results, repeating a persuasive communication tends to first increase and then de-

crease agreement. They proposed a two-stage attitude modification process: repetition

enhances a person’s ability to process a message in the first stage, and tedium and re-

actance are elicited by excessive exposures in the second stage. Similarly, this two-stage

process might also apply in recommendations. Although CARS [10] adapt recommen-

dations based on users’ contextual state, i.e., based on time, mood, or companion(s),

there might be contexts that are hard to measure and very sparse data about them is

available for each individual user. Therefore, repetitive recommendations may increase

the chances that users process the recommendations in relevant contexts. In addition,

we study user-perceived boredom and freshness associated with the dynamics through

surveys. There is not much research on changing recommendations based on users’

past exposure to recommended items. One thread of related research is CTR (Click-

Through Rate) estimation in information retrieval [57], where documents with many

exposures but no positive feedback from users are downgraded because their estimated

CTRs become lower. Recommender systems can also utilize indirect feedback, such as

clicks, which would be treated as an implicit preference signal [72]. In other words,

when focusing on implicit users’ feedback in response to displayed recommendations, a

recommender can be designed to achieve similar dynamics. We do not use CTR as the

primary evaluation approach in our work, because the system studied is not targeted

at generating click-throughs, but rather at helping users have better experience with in

exploring and finding movies (as measured in a much more holistic, comprehensive man-

ner). Moreover, in our system users can see and rate movies without clicking through

to detail pages, so informativeness of clicks as a primary evaluation measure may be

limited. However, we do keep track of clicks as one of several indicators of user activities

and engagement with the system.

Recommender systems can be evaluated with offline metrics and online field exper-

iments. Offline metrics sometimes make assumptions about online environments. One

64

such important assumption is that the recommendation value decays going from the

top to the bottom of a recommended item list. The nDCG [4] and weighted recall (or

Breese’s score [79]) evaluation metrics, for example, assume exponential decay. We

propose to test this assumption, because it may not be optimal to display all best rec-

ommendations at the same time. List-wise optimization have been shown to improve

recommendations [80], which suggests that an optimal list may not be the same as a

collection of individually optimal items. Also, it has been shown that, in addition to

accuracy, many other properties of a recommender are important aspects of user sat-

isfaction [121, 81, 85, 86, 112], such as diversity, novelty, etc. Pu et al. [86] proposed

a user-centric evaluation framework for recommender systems with state-of-art survey

designs [122]. Knijnenburg et al. [83] proposed a comprehensive framework taking into

account both objective system measurements and subjective user perceptions to explain

user experience. We directly apply this framework in evaluating our manipulations. Par-

ticularly, they postulate six components and their causal relationships objective system

aspects (OSA), subjective system aspects (SSA), user experience (EXP), user interac-

tions or activities (INT), situational characteristics (SC) and personal characteristics

(PC) – according to Theories of Reasoned Action (TRA) [84]. We use and model the

former four components through methods of recording and analyzing user activities and

survey responses here. This framework relies strongly on asking users their subjective

experience through survey questions. In many examples of this type of studies, users

typically interact one time with a system and then evaluate its performance. However,

in our current study users can interact with a system over time, i.e., over several ses-

sions. Because of this, we vary the moment of presenting the survey questions, to see if

querying the user experience might affect how users interact with the system.

5.3 Experiment Design

To answer our research questions, we conduct a field experiment in MovieLens (41,125

movies as of July 2016). We include users who have at least 15 ratings to make sure that

we are testing on users who have a reasonable level of engagement with the system, since

most of the active users have more than 15 ratings (as shown in the Results section).

We also limit the study to include only users who have at least one session of usage in

65

the system, excluding the current session for reasons explained below.

We invite qualified users to join the experiment through a link displayed on the

home page: “Would you like to experience a new movie recommender named Spirit in

MovieLens?” (Spirit is the recommender name we use for all conditions in this study).

After clicking the link, users see an informed consent page, which briefly introduces

the experiment including information about potential survey requests. If they consent,

they are randomly assigned into one of the experimental conditions. Users can opt out

of using the experimental recommender at any time by clicking a link at the top right

corner which says “Stop Using the Spirit”. Note that opt-out here specifically means

stopping using the experimental recommender, not completely dropping out from the

experiment. Users are informed that they can contact us through MovieLens to remove

their data from the system if they wish to withdraw entirely. This experiment was

approved by our institution’s Institutional Review Board.

We employ a between-subjects 3x2x2 factorial design. The first design factor is

cycling, which takes three levels – no cycling, inter-session cycling, and intra-session

cycling – as mentioned in the previous section. What we want to accomplish through

cycling is to control the amount of exposure a recommended item can have on a user,

favoring those items that are least exposed but only after they have been presented

certain number of times. This is achieved by re-ranking top-N items first based on the

number of previous presentations and then based on the predicted preference from state-

of-art algorithms. We use a presentation to specifically refer to a movie card display

in the grid layout of MovieLens. Instead of directly using the number of presentations,

we calculate how many times a movie has been presented to a user, divided by three

(rounded to the smaller integer), which we call presentation score, based on a history of

presentation data tracing backwards to one session before a user joins the experiment

(this is enabled by our inclusion criterion of the participants, i.e., users who have at

least one session before joining). The implication of this is that an item will first be

exposed three times before the algorithm starts to downgrade the item’s rank in the

new list. The predicted preference (i.e., rating) of an item comes from the popular

item-item collaborative filtering algorithm [5] built on the historical data of user ratings

on items in the MovieLens. The top-N list is first sorted by the presentation score

ascendingly and then sorted by the predicted ratings descendingly to get the new top-N

66

list. Further, as mentioned before, two types of cycling intra-session and inter-session

are designed to have different dynamical extent. For the intra-session type, we cycle

the top-N recommendations once every time users go (or go back) to the home page

even when it is within the same session. For inter-session cycling, we only cycle once

when users come to the home page in a new session. We take 240 items as the (top-)N

here. It spans 10 pages of movie cards (with each page displaying 24 movies) beyond

which there is no manipulation on the recommendation list.

Another design factor, serpentining, takes two levels: true and false. What we

want to accomplish here is to have a new list where users can see best items spread

in multiple pages. When serpentining=true, we re-organize the top-N list based on

the original rankings of the recommendations (i.e., 1 through N). Specifically, we pick

movies intermittently with a constant ranking interval M (= 4). This is achieved by

first reshaping the N − by − 1 list into a M − by − N/M (i.e., 4-by-60 here) matrix

in a column first order as illustrated in Table 5.1. Table 5.1 also gives the page index

when users are requesting the k-th (k=1 to 10) page of their recommendations. Notice

that the 9th and 10th pages span two rows because each row has only 12 movies left.

The algorithm can be summarized as Page-level Column First and Item-level Row First

(PCF-IRF) serpentining.

Table 5.1: Page-level Column First and Item-level Row First serpentining (PCF-IRF)
algorithm illustrated with (top-)N=240, M (number of rows)=4. 1st, 2nd, kth are the
page indices. M controls how scattered the new top-N list is in the original rankings
and also how much change an item’s ranking can have after cycling).

1st 1 5 ... 93 5th 97 101 ... 189 9th 193 197 ... 237

2nd 2 6 ... 94 6th 98 102 ... 190 9th 194 198 ... 238

3rd 3 7 ... 95 7th 99 103 ... 191 10th 195 199 ... 239

4th 4 8 ... 96 8th 100 104 ... 192 10th 196 200 ... 240

To better explain the two manipulations, Figure 5.1 and 5.2 illustrates how they

work with simple examples. In Figure 5.1, there are four items in the top-N (N=4)

list. Originally, they are ordered according to the predicted scores from the best to the

worst. With the cycling manipulation, when we observe that the first two items have

been displayed for three times, we demote the two items to the bottom of the list and

hence indirectly promote other two items to the top so that users can see less exposed

items. In Figure 5.2, there are eight items in the top-N (N=8) list and we can only

67

Figure 5.1: Illustration of how cycling works with an example.

Figure 5.2: Illustration of how serpentining works with an example.

display four items in one page. Instead of displaying the items from the best to the

worst according to the predicted scores, with serpentining manipulation, we fill out the

positions of the pages by picking items with a fixed interval from the original list (here

the interval is two, i.e., picking one and skipping one) so that the best items are spread

across the two pages. As we see, even when a user go to the second page, the user can

still see the second best recommended item.

In the case where both serpentining and cycling algorithms are enabled (i.e., the

interaction between the two), we first apply the serpentining algorithm, then apply a

cycling algorithm to the results. However, we only allow the cycling algorithm to affect

ordering within columns as shown in Table 5.1. The goal of this design is to control

the freedom of an item’s new presentation position after cycling. For example, items in

the second column of Table 5.1 with rankings 1 through 4 can exchange presentation

68

positions through cycling but not with other columns. It means the very best item may

only go to the first of the 2nd, 3rd or 4th page. Serpentining=false actually is a special

case where M=N, in which an item can be anywhere between 1 through N and may have

dramatic position change, such as going from the 1st page to the 10th page. The third

design factor asking takes two levels: delayed asking and non-delayed asking. For non-

delayed asking condition, we survey users as soon as they have enough interactions (see

the measurements for more details) with the experimental recommender. For delayed

asking condition, we only survey users after they have joined the experiment for at least

one month and also have enough interactions.

5.3.1 Measurements

Based on Knijnenburg et al. [83], we measure users’ interactions with the system (INT),

user perceived subjective system aspects (SSA), and user experience with the recom-

mender (EXP). For INT, the following list of metrics are computed in a fixed period

(half a month here) of time for each user.

• optOutRate : What percentage of users opt out from the experimental recom-

mender?

• numSession : How many times users come to use the recommender?

• totalLength : How long do users stay in the recommender (in seconds), which

equals to the sum of all their session lengths?

• numPageViews: How many recommendation pages do users browse? Note that

we specifically use page views to refer to recommendation page (with list of movie

cards) browsing, not including movie details page view.

• numActions: How many actions do users do in the recommender? Action refers

to either rating, clicking, or wishlisting.

• numRatings: How many items do users rate?

• numInterested : How many of the actions are clicks or wishlistings, which indi-

cate that users are interested in the specific movies that were displayed?

69

• numInterestedPerPage : How effectively is each recommendation page captur-

ing user interest so that users click the shown items or add them into the wishlist?

Table 5.2: SSA and EXP metrics and their corresponding survey questions.
Metric Survey Question

accuracy My top-picks match my tastes in movies

familiarity I am familiar with many of the movies,in my top-picks

diversity My top-picks have a diverse selection of movies

novelty My top-picks help me discover new movies

change I have noticed my top-picks changing

freshness I like my top-picks for having new recommendations

confusion I get disoriented sometimes by the change of my top-picks

boredom I am bored by my top-picks for recommending the same movies

usefulness My top-picks help me find interesting movies

satisfaction Overall, I am satisfied by my recent top-picks

Table 5.3: Condition naming for the interaction between cycling and serpentining fac-
tors.

Cycling
Serpentining

no intra-session inter-session

true serp. serp-intra. serp-inter.

false ctrl. intra. inter.

We measure SSA and EXP by embedding a survey into the recommendation page.

To have informative responses from users, we set the minimum amount of experience

users are required to have in the experimental recommender; specifically, we survey

them after they browse more than three recommendation pages with lists of movie

cards. We invite users to respond to the survey by displaying a survey link together

with the prominent recommendation section title in the page. If users click the link

(which is optional), a survey with 10 Likert-scale questions is expanded as listed in

Table 5.2. The first eight are measuring SSA, and the remaining two are measuring

EXP (usefulness and satisfaction). Metrics for SSA include four classic metrics used in

recommender systems literature: perceived accuracy, familiarity, diversity, and novelty.

The questions are designed referencing Pu et al. ’s work on evaluating recommenders

through surveys [86, 122]. Because the survey was given while the user interacted

with the recommender and to reduce the opt-outs due to a long survey, we chose to

implement a short survey that measures each aspect with only one item, rather than

70

using multiple items per question as proposed by Knijnenburg et al. [83]. We also

design specific questions pertaining to our manipulation, measuring perceived change,

freshness, confusion, and boredom. Here the freshness question is about the positive

aspect of the change, confusion asks about the negative aspect of too much change, and

boredom is about the negative aspect of too little change. After displaying the first

survey, we ask a user the second time with the exact same survey one week later (if they

come back to the system and browse for another three or more recommendation pages),

in case users do not perceive the recommender dynamics when responding initially.

5.4 Results

We ran the experiment and collected data from March 22, 2016 until May 14, 2016.

During this period of time, 6249 users were active in the site. 5158 users were presented

with the invitation link to join the experiment and 1218 clicked the link. Overall, 987

users joined the experiment, with each of the 12 (3x2x2) conditions having around 80

users. In subsequent analysis, we also consider the subsample of 802 users who joined

the experiment at least half a month before analysis, with each of the conditions having

around 66 users. 103 users responded to the surveys, providing 121 responses, 92 of

which are complete across all the survey questions.

To verify the randomization, we conducted an analysis on the participants’ activity

history before they joined the experiment to make sure users across different conditions

were comparable. Specifically, we looked at each user’s INT metrics during the half

month before joining and did not find significant differences.

RQ1: OSA ⇒ INT. We only consider users who joined the experiment for at least

half a month and calculate the metrics for each user’s first half month. For users who

choose to opt out of the experiment, we exclude activities after the opt-out time. For

each metric, we build a negative binomial regression model with the recommender factor

as shown in Table 5.3 (six levels) and asking factor (two levels) as the predictors. All

models are significantly better than their Poisson regression counterparts (i.e., the data

is more overdispersed than what a Poisson model assumes). The results are summarized

in Table 5.4. We report results with p-values less than 0.1 here. First, we find that users

(including both users who stay and those who opt out) in intra. condition have a higher

71

probability of opting out than those in ctrl. condition (0.217 vs. 0.094, p=0.005). We do

not find significant difference in numSession (overall mean is 4.59). On contrary, users

in intra. and serp. condition have higher or marginally higher totalLength than users

in ctrl. condition (3542 vs. 2148, p=0.027; 3147 vs. 2148, p=0.083). The following two

metrics numPageViews and numActions explain why users in intra. condition spend

more time in the recommender. It shows that intra. condition users have marginally

higher numPageViews (28.1 vs. 21.6, p=0.065), i.e., they browse more; also these

users have higher numActions (21.7 vs. 11.9, p=0.008), i.e., they do more actions than

ctrl. condition users. We find that users in inter. condition have marginally higher

numPageViews than those in ctrl. condition as well (27.3 vs. 21.6, p=0.098). The fol-

lowing two metrics numRatings and numInterested further explain which actions users

perform more. Consistently with the overall increase of numActions for intra. condition

users, they not only have higher numRatings (15.8 vs. 8.28, p=0.037, i.e., they rate

more) but also higher numInterested (6.08 vs. 3.70, p=0.031; i.e., they are interested

in more recommendations) compared with those in ctrl. condition. Users in serp. and

inter. conditions also have higher numInterested than ctrl. (6.00 vs. 3.70, p=0.031; 5.77

vs. 3.70, p=0.052), which explains why users in serp. condition spend more time in the

recommender. We also separately analyze the metrics for users who stay. They are con-

sistent with the above results and become more statistically significant. Users in either

inter., intra., serp. condition have higher totalLength, numPageViews, numActions and

numInterested. Intra. conditions users also have higher numInterestedPerPage which

means the probability of those users being interested to click or wishlist is higher com-

pared with users in ctrl. We do not compare across conditions for dropped out users,

because it is highly likely that the user population is different.

We also find some interesting effects on numActions and numRatings for ask=non-

delay (vs. delay) condition that are not included in the table due to space limitations.

Specifically, users surveyed in a non-delayed way have higher numRatings (12.2 vs. 7.48,

p=0.008, i.e., they rate more) and hence have marginally higher numActions (16.6 vs.

12.9, p=0.061) than those surveyed in a delayed way.

RQ2: OSA ⇒ SSA and EXP . For simplicity of analysis, we only use the 92

complete responses for all survey questions to explore this research question. For each

metric, we build an ordinal regression (cumulative link mixed effects) model with user

72

identification as the random intercept (as we have more than one survey response for

some users). The fixed effects part of the model has the interaction between cycling

and serpentining, and also asking factor as the input. All the results are summarized

in Table 5.5. We do not find any significant effects for asking and, therefore, it is not

included in the table due to space considerations.

First of all, we do not find statistically significant differences between conditions for

overall satisfaction. However, users in intra., serp. and serp-inter. conditions perceive

the recommendations to have less usefulness compared with those in ctrl. condition.

This EXP level feedback from users can be explained by comparing the individual SSA

metrics. For classic metrics, we find users in inter., intra. and serp. conditions perceive

the recommendations to be less accurate than those in ctrl. condition. Similarly, users

in intra. and serp. conditions report that they are less familiar with the recommended

items.

We also analyze the specially designed metrics for our manipulations. First, we

notice that users in inter., intra. and serp-intra. conditions report more perceived

change compared with ctrl. condition. This is by design but reassures us that indeed

our manipulations are perceived by the users. Given that users perceive the change,

a further question regarding the change is whether users like it. In terms of the the

positive aspect of the change, users in intra. and serp-inter. perceive significantly more

freshness than users in ctrl. condition. Regarding the negative aspects of too much

change and too little change, we find users in serp. condition perceive more boredom

than those in ctrl. condition. Interestingly, we find users in inter. condition report more

confusion than those in ctrl. while users in intra. condition do not perceive significantly

more confusion than ctrl. condition.

RQ3: SSA ⇒ EXP. We are interested in how users perceived SSA on recommen-

dations (particularly the ones we specially designed for our manipulations, i.e., change,

freshness, boredom, and confusion) affect user EXP (see [83] for the postulated causal

relationship between SSA and EXP). To answer this question, we only use all complete

survey responses for the 92 users and build two ordinal regression models to predict

usefulness and satisfaction with the individual SSA. Table 5.6 shows the results with

regression coefficients and p-values. From the table, we find that novelty, accuracy, di-

versity, and freshness (marginally significant effect for freshness) contribute positively to

73

user perceived usefulness, in the descending order of effect sizes. Boredom contributes

negatively to usefulness although it is marginally significant. While all factors matter

for user overall satisfaction except perceived change (which is reasonable, because it

measures perception, not preference), the order of the effect sizes is: accuracy, familiar-

ity, boredom, freshness, novelty, diversity and then confusion, where only confusion and

boredom contribute negatively and others contribute positively.

5.5 Discussion

Here we discuss the main findings about different top-N list manipulation approaches

explored in this work. We find that intra-session cycling has an effect of “scaring”

some users away, while at the same time increasing activity levels for other users, such

as browsing more recommendation pages, rating more items, clicking or wishlisting more

items, and hence spending more time in the recommender (at least in the first half month

we measured). It suggests that this type of manipulation may be a “love it or hate it”

recommender property. The results obtained via survey questions reveal some poten-

tial reasons. In particular, users with this recommender report less perceived accuracy,

familiarity, and marginally less usefulness, although they also perceive more freshness

because of more change. Thus, changing recommendations in the same session attracts

more user activities but may increase the risk of churning. We hypothesize that the fol-

lowing aspects might be relevant with respect to observed effects and future extensions.

First, the platform we use does not have actual item consumption capabilities built

in, i.e., users use this movie recommender mainly as a tool to find interesting movies

but do not actually watch movies on the site. The dynamics may be quite different in

platforms with consumption, because users can proceed with item consumption directly

after a recommendation instead of speculating or processing the recommendation as a

piece of information to be used later. The increasing effect of user activities should be

interesting to system designers, but further study is needed to explore to what extent

this effect generalizes to platforms with built-in consumption. Second, cycling 240 items

(i.e., the value of N in our top-N recommendations) in our study may represent too big

of a range for some users. They may experience dramatic accuracy degradation after

cycling for a while, which could contribute to their opt-out. Thus, testing the cycling

74

approach with smaller values of N in different platforms also constitutes an interesting

topic for future research.

Inter-session cycling and serpentining are the two best-performing conditions in

our experiment, considering both opt-out rate and user activities. They do not have

a significant effect of “scaring” users away, especially the serpentining approach. At

the same time, both of them increase user activities such as clicking or wishlisting,

especially for users who stay (i.e., do not opt out). The results also show a trend that,

in these conditions, users who stay are more active, while users who stay in the control

condition are less active compared with those who opt out. This suggests that we are

able to retain more active users through our top-N list manipulations. However, we

also want to point out that users with inter-session-cycled recommendations report less

accuracy, more change, and also more confusion. Users in a serpentining recommender

also report less accuracy, familiarity, and more boredom. Interestingly, users in inter-

session cycling instead of intra-session cycling perceive more confusion than those in

the control condition. This might result from the fact that users perceive the change

of recommendations but cannot connect the change with their own previous activities

when they come back to the system in the next visit. This suggests that users demand

at least certain extent of control (or sense of control) in using a recommender system.

They expect the recommendations to change based on their taste or at least what they

tell about their taste to the recommender.

We see interesting interactions between cycling and serpentining. Serpentining mit-

igates the negative effects of cycling, such as opt-out rate for intra-session, reduction in

accuracy, and increased confusion for inter-session. However, serpentining also reduces

the positive effects of cycling, such as increased user activities and improved freshness for

intra-session. One exception is that the effect of inter-session cycling with serpentining

on perceived freshness is positive. According to these results, it seems that combining

the two manipulations makes things too complicated for users to build a mental model

on how the recommender is working.

Although the interface of MovieLens has a grid-view layout, we believe that these

approaches are generalizable to other layouts, such as lists. Even if a list does not

have pagination, our algorithms can be adapted by using the top-N as the length of the

list, which can be serpentined and cycled, although such manipulations might be more

75

apparent from the user’s perspective (e.g., if the list is short).

We would like to note to two limitations in our study: self selection bias and uncer-

tainty about longer term effects. First, our analysis shows that users who were qualified

for the experiment but chose not join were significantly less active than users who joined

the experiment. Second, the duration of this experiment does not permit us to draw

conclusions about longer-term usage patterns, either for those to retain serpentined

and/or cycled recommendations or from those who experience them but opt out.

76

Table 5.4: Results of different conditions for INT metrics. au indicates the measure-
ment and effect across all users in that treatment group, including users who opt-out,
returning to their default recommender. su indicates the measurement and effect for
users who retain the experimental recommender in the measured first half month. We
include both to estimate the effects both on those who retain the treatment and on
the population of users offered the treatment overall. We analyzed users who opt-out
separately, and in no measurement did they differ significantly from the control group.
numSessions (overall mean is 4.59) is not shown because there were no statistically
significant differences. See Table 5.3 for the definition of condition names that combine
cycling and serpentining. The numbers are means with standard errors in the parenthe-
ses and only significant comparisons (through negative binomial regressions) are marked
with significance codes: + (p < 0.1), * (p < 0.05), ** (p < 0.01).

Conditions combining cycling and serpentining

ctrl. (n=148) inter. (n=134) intra. (n=129) serp. (n=145)
serp-inter.
(n=128)

serp-intra.
(n=118)

optOutRate 0.094 (0.024) 0.149 (0.030)
0.217 (0.036)
>ctrl. **

0.117 (0.026) 0.132 (0.029) 0.093 (0.026)

totalLength
au 2148 (333) 3107 (506)

3542 (588)
>ctrl. *

3147 (493)
>ctrl. +

2688 (448) 2153 (374)

su 2148 (344)
3369 (585)
>ctrl. +

3442 (635)
>ctrl. +

3314 (543)
>ctrl. +

2647 (466) 2127 (387)

numPageViews
au 21.6 (2.09)

27.3 (2.76)
>ctrl. +

28.1 (2.90)
>ctrl. +

24.9 (2.43) 19.6 (2.04) 21.3 (2.31)

su 20.6 (2.06)
29.5 (3.18)
>ctrl. *

27.8 (3.19)
>ctrl. *

26.5 (2.70)
>ctrl. +

18.9 (2.08) 20.5 (2.30)

numActions
au 11.9 (1.87) 15.2 (2.49)

21.7 (3.62)
>ctrl. **

14.5 (2.28) 10.3 (1.74) 15.4 (2.70)

su 10.5 (1.70)
16.6 (2.91)
>ctrl. +

19.5 (3.63)
>ctrl. *

15.7 (2.60)
>ctrl. +

8.45 (1.51)
15.9 (2.87)
>ctrl. +

numRatings
au 8.28 (1.77) 9.61 (2.16)

15.8 (3.63)
>ctrl. *

8.68 (1.88) 6.04 (1.39) 11.1 (2.68)

su 7.35 (1.64) 10.5 (2.55)
13.6 (3.50)
>ctrl. +

9.70 (2.21) 4.43 (1.09) 11.6 (2.91)

numInterested
au 3.70 (0.588)

5.77 (0.952)
>ctrl. +

6.08 (1.02)
>ctrl. *

6.00 (0.951)
>ctrl. *

4.35 (0.740) 4.35 (0.771)

su 3.21 (0.538)
6.26 (1.11)
>ctrl. **

6.15 (1.16)
>ctrl. *

6.25 (1.04)
>ctrl. **

4.07 (0.742) 4.32 (0.801)

numInterestedPerPage
au 0.137 (0.022) 0.148 (0.025) 0.204 (0.036) 0.160 (0.026) 0.168 (0.029) 0.193 (0.035)

su 0.132 (0.022) 0.153 (0.028)
0.214 (0.042)
>ctrl. +

0.148 (0.026) 0.156 (0.029) 0.188 (0.036)

77

Table 5.5: Results of different conditions for SSA and EXP metrics. See Table 5.3 for
the definition of condition names that combine cycling and serpentining. ctrl. condition
is the base to compared with in the ordinal regressions. The numbers are coefficients
(in log odd-ratio scale) with standard errors in the parentheses. Significance codes: +
(p < 0.1), * (p < 0.05), ** (p < 0.01).

inter. intra. serp. serp-inter. serp-intra.

satisfaction -0.698 (0.707) -0.849 (0.662) -0.863 (0.768) -0.482 (0.740) -0.440 (0.757)

usefulness -0.793 (0.774) -1.19 (0.719) + -1.99 (0.866) * -1.72 (0.799) * -1.26 (0.804)

accuracy -1.72 (0.751) * -1.94 (0.715) ** -1.51 (0.828) + -0.477 (0.822) -1.08 (0.785)

familiarity -0.731 (0.782) -1.47 (0.748) * -2.19 (0.911) * -0.453 (0.811) -0.940 (0.850)

diversity -0.037 (0.737) 0.999 (0.705) -0.823 (0.843) 0.874 (0.793) 0.413 (0.786)

novelty -0.449 (0.698) -0.201 (0.659) -1.22 (0.779) -0.777 (0.761) -0.673 (0.772)

change 2.78 (1.00) ** 2.37 (0.868) ** 0.668 (0.912) 1.16 (0.869) 2.02 (0.954) *

freshness 0.903 (0.741) 1.63 (0.720) * 0.437 (0.826) 1.60 (0.816) + 1.08 (0.806)

boredom -0.454 (0.803) 0.319 (0.763) 1.89 (0.966) + 1.08 (0.891) 1.11 (0.871)

confusion 1.87 (0.895) * 1.10 (0.792) -0.827 (0.963) 0.163 (0.865) 1.28 (0.888)

Table 5.6: The coefficients and standard errors (in parentheses) of the ordinal regressions
using individual SSA to predict EXP (usefulness and satisfaction). Significance codes:
+ (p < 0.1), * (p < 0.05), ** (p < 0.01), *** (p < 0.001).

SSA
EXP

usefulness satisfaction

accuracy 1.10 (0.29) *** 1.54 (0.31) ***

familiarity -0.160 (0.24) 0.807 (0.26) **

novelty 1.22 (0.29) *** 0.661 (0.28) *

diversity 0.613 (0.27) * 0.569 (0.26) *

change -0.204 (0.31) 0.018 (0.28)

confusion -0.093 (0.28) -0.479 (0.28) +

freshness 0.498 (0.30) + 0.702 (0.29) *

boredom -0.466 (0.26) + -0.778 (0.27)**

Chapter 6

Optimizing for User Interaction

6.1 Introduction

Machine-learning-based recommender systems are driven by user feedback data, e.g.,

explicit feedback data of ratings [28] and implicit feedback data of actions [72]. Typically,

supervised learning models to predict rating values or action probabilities are trained in

these systems based on the theory of empirical risk minimization [123], i.e., optimizing

to reduce the prediction errors in historical training data with regularization to maintain

generalizability.

In the history of recommender system research, there was a transition of trend

from using explicit feedback data to implicit feedback data. The earlier pursuit of

the Netflix Prize [28] was a (explicit-feedback) rating prediction problem. It greatly

drove the progress of recommender system research. Amatriain and Basilico [124] in

Netflix Blog later pushed back on researcher’s focus on rating prediction, arguing that

“accurate prediction of a movie’s rating is just one of the many components of an

effective recommendation system” and “using predicted ratings on their own as a ranking

function can exclude items that the member would want to watch even though they may

not rate them highly”. They turned to a broad set of techniques to model the various

types of user action data in the system to recommend items that the member is most

likely to play and enjoy.

Until today, the difference between recommender systems built on explicit vs. im-

plicit feedback data is not addressed in the research literature. This type of research

78

79

inquiry is hard because offline metrics can not address it while live experiments require

access to platforms that have real active users. We set out to compare the two types of

recommenders in a live experiment in MovieLens based on the classical matrix factoriza-

tion algorithms [18]. Being aware that there are many different algorithms proposed for

modeling both explicit and implicit feedback data [18, 72, 111, 110], we chose the clas-

sical ones for better controlling the differences of algorithms while focusing on studying

the differences that are inherent in the two types of feedback data. This comparison

is possible also because the majority of the activities that users perform on the site is

rating movies, which gives us access to not only implicit user actions but also abundant

explicit ratings.

User-centric research in recommender systems [82] tends to focus on a broad set of

factors and metrics that contribute to the success of recommender systems with the

theoretic goal of supporting user decision making processes in front of a large amount

of choices. Particularly, accuracy, diversity, novelty, serendipity, popularity, freshness

and recency etc. [86, 82, 105, 112, 125] have all been studied in prior literature. Within

this framework, accuracy of predicting ratings or actions only reflects part of the many

factors that are important. Previous research has shown that diversification, blending

in popularity etc. on top of predictions help improve user engagement and experience

[112, 125]. However, how exactly to blend multiple factors in to produce a final set of

recommendations is tricky because there is no single ground-truth objective to target

(e.g., the success of recommender systems is too abstract) to guide the blending process.

Adomavicius et al. [12] define the recommendation problem as a multi-criteria deci-

sion making problem (MCDM) and argue that the suitability of a recommendation for a

particular user may depend on more than one utility-related aspect that the user takes

into consideration when making the choice. Correspondingly in machine-learning-based

recommender systems, it is typically modeled as a multi-objective optimization problem

to take into account the multiple criteria [13]. However, the question that whether this

approach can always help achieve an optimal solution across all criteria or whether it

compromises some criteria while improving others is not yet fully understood. Online

tuning in live systems is necessary to find the best combination weights but it usually

takes long cycles to tune and hence is very expensive to follow.

80

In this research, we tried two new approaches in a live experiment to combine mul-

tiple factors in a principled way (also using machine learning techniques) inspired by

the social theory of technology acceptance [87] and the reinforcement learning theory

on decision making under uncertainty [126]. The first approach is to target user re-

turn (i.e., technology acceptance) as the objective to combine multiple factors. The

second approach is to target online (on-policy in decision-making terms, see the related

work section) user interaction following an online learning (specifically contextual bandit

learning) algorithm.

The above motivation leads us to the following two research questions.

• RQ1: What are the differences between recommender systems based on explicit

vs. implicit user feedback data modeled with the classical matrix factorization

algorithms?

• RQ2: Do multi-factor-blending recommendation algorithms lead to improved or

changed user experience and if so, how?

In the rest of the chapter, we report on a live experiment involving more than 1.5K

real users of a movie information site using six different recommenders for at least one

month, measuring a broad set of user-centric metrics including objective user activities

and subjective user perceptions. We found that

• a recommender based on a matrix factorization model minimizing (implicit) action

prediction error engages users more (in terms of page views and interactions with

the recommendations) than a matrix factorization model minimizing (explicit)

rating prediction error, which empirically explains the transition from modeling

explicit feedback data to implicit feedback data in recommender system research.

• the increased positive engagement is also associated with a significant amount of

increase in user negative engagement (e.g., low ratings, clicking “not interested”,

browsing effort), likely because implicit feedback is noisier than explicit feedback

about user preferences.

• blending both explicit and implicit feedback from users by targeting online (on-

policy) user interaction through a contextual bandit learning algorithm can help

81

gain the benefits of engagement and mitigate the possible cost, although it does

not further significantly drive engagement.

• with our current design, targeting user return as the objective does not signifi-

cantly affect user engagement (e.g., the actual future user return and churning

risk) and shows a trend of hurting perception metrics compared with the baseline.

In the following sections, we first introduce the necessary background on user-centric

research and machine learning techniques in recommender systems. The used techniques

of this work span from classical matrix factorization (together with stochastic gradient

descent) to contextual bandit learning (particularly the LinearUCB algorithm) and the

Q-learning algorithm. Then we detail the method of this work and elaborate the online

field experiment design. We show the results next and discuss the findings along with

potentially promising future work. Lastly, we summarize this work’s conclusion and

contribution.

6.2 Background of User-Centric Research

User-centric research in recommender systems has been increasingly important. As

pointed out by McNee et al. [81], recommendation accuracy on its own often is not

a sufficient indicator of recommendation quality, and further work by Konstan et al.

[82] elaborates the evolution of recommender system research from being concentrated

purely on algorithms to research focused on the rich set of questions around the user

experience with the recommender.

Several frameworks have been proposed and widely used by researchers to evaluate

and understand user experience in recommender systems. For example, Knijnenburg

et al. [83] proposed a comprehensive framework taking into account both objective sys-

tem measurements and subjective user perceptions to explain user experience. McNee

et al. [85] proposed an analytical process model called Human Recommender Interac-

tion that acts as a bridge between user information seeking tasks and recommendation

algorithms to help with the design and structure of recommender systems. Pu et al.

[86] proposed a user centric evaluation framework by employing state-of-the-art survey

designs structured and derived based on theories of human behavioral intention and rea-

soned action. Particularly relevant to our research, the theory of UT-AUT developed

82

by Venkatesh et al. [87] postulates important social user factors that cause people to

develop behavioral intention towards technologies and actual behavior of accepting or

abandoning of the technologies. We are interested in studying whether this theory can

be combined with machine learning, especially with reinforcement learning techniques,

to optimize for user acceptance of recommender systems at scale. Work from Xiao et

al. [88] is a direct application and further development of this theory in the domain of

e-commerce recommender agents, e.g., highlighting the importance of trust, perceived

ease of use, and perceived usefulness in determining the user intention of future use of

the recommender agents.

6.3 Background of Machine Learning

To support explaining the recommenders we built in the experiment, this section sets

up notations and gives a formal background on machine learning techniques used in

this work. Note that this section is not meant to give an overview on how machine

learning can be applied in recommender systems (See [127, 128] for a better review).

Instead, it serves the purpose of motivating our research and explaining the perspective

of approximating recommendation as a statistical learning problem.

Denote u as the representation of a user (e.g., basic profile, history interactions with

the system) and c as the current context (e.g., time, location etc.) of a user entering

a recommender system requesting item recommendations. Define s = (a; c), i.e., s

describes the the environment or state of both the user and the system. Denote a to be

the action or decision that a recommender system needs to make. In the most simple

case, a might be an item to recommend or a set of recommendations to present. More

broadly however, it might incorporate the decision of how to present.

6.3.1 Empirical Risk Minimization

In the theory of supervised-learning-based recommender systems, it assumes that there

is a y that represents u’s preference under context c on a and it follows an unknown

conditional distribution P (y|s; a) (i.e., we focus on determinant statistical models here

instead of generative models; see [129] for the difference). If we can reliably estimate this

distribution for all possible s and a (e.g., sufficient observations are made) and fix our

83

decision policy of making recommendations to always pick a with the largest E(y), then

the recommendation problem becomes the following stochastic optimization problem,

where L an objective function measuring the loss or error of estimating y with a model

(or function) f and EP (x) denotes the expectation of x with respect to the distribution

P (also called the Statistical Decision Theory for supervised learning [130]).

f∗ = argminfEP (L(f, y)) (6.1)

In reality, since we do not know the true P (assuming there exists such a P), the the-

ory further assumes that the observed user feedback data are I.I.D samples of P . Since

parametric models are popularly used as f in recommender systems, e.g., the widely

used and studied matrix factorization [18], we denote f with f(W,x) where x = (s; a)

and W are all model parameters without loss of generality. Therefore, the problem in

Equation 6.1 is further simplified to the following Empirical Risk Minimization prob-

lem [123] (Equation 6.2), where N is the number of observations (x, y pairs) from user

feedback data. g(w) is a regularization term used to penalize large W , e.g., in terms of

L1 or L2 norms and is the key of W ∗ having theoretical guarantees when generalizing

to the unknown P [123]. λ is a scalar parameter controlling the strength of the penalty.

W ∗ = argminw

N∑
i=1

L(f(W,xi), yi) + λg(W) (6.2)

6.3.2 Matrix Factorization

Matrix factorization is a type of low-dimensional embedding model where x = (u; c; a)

are represented by low-dimensional dense vectors. The dimension noted as d here is a

hyper-parameter. FunkSVD [7, 18] is a basic version of the family of matrix factorization

models used in this work. See SVDFeature [21] and libFM [110] for generalized versions.

Specifically following Equation 6.2, we have

f(W,xi) = f((b, U, V), (ui; ai)) = b0 + bui + bai + UTui · Vai (6.3)

Among the model parameters W = (b, U, V), b is a bias vector and U and V are

factor matrices. Note that we use u and a as the index into b, U and V . b0 is reserved

for the global bias (similar to the intercept in linear regression models).

84

Depending on the domain of y, different loss functions L are suitable. For a rating

prediction problem, we use a least-squares loss function as follows.

L(f, y) =
1

2
(f − y)2 (6.4)

For an action prediction problem, assuming y ∈ {0, 1} representing whether there

is a positive action or feedback from the user or not. Define the sigmoid function

σ(f) = 1/(1 + exp(−f))

L(f, y) = y lnσ(f) + (1− y) ln(1− σ(f)) (6.5)

For both types of problems, we use L2 norm regularization. That is,

g(w) = λ1|b|22 + λ2|U |22 + λ3|v|22) (6.6)

The Stochastic Gradient Descent (SGD) [18] algorithm (shown in Equation 6.7)

is widely used to solve the optimization problem in Equation 6.2 when f is a matrix

factorization model. Define err = y− ŷ where ŷ = f for rating prediction and ŷ = σ(f)

for binary action prediction. Denote η as the learning rate. The SGD algorithm follows

the following updating rules. Note that the updating rule for b is common for b0, bu

and ba.

b← b+ η(err − λ1b)

Uu ← Uu + η(err · Va − λ2Uu)

Va ← Va + η(err · Uu − λ3Va)

(6.7)

6.3.3 Q Learning

Different from supervised learning, when applying the theory of reinforce learning [131,

126] in recommender systems, the recommendation problem is modeled as a sequential

decision-making problem. At any time step t (t = 1, ..., T) where T is the horizon to

consider, the system is faced with the decision of taking action at given a state st, i.e.,

(ut; ct). For each at that the system takes, it is given a reward feedback rt which could

be proportionate to the user’s rating or whether the user performs positive action on the

85

item recommendation. The goal of the system is to find a policy, which is a mapping

function π(s) → a, to maximize its accumulative reward across the horizon T , i.e.,

argmaxπRT where RT =
∑T

t=1 rt. This accumulative reward is called the value of a

policy π (Policy Value) if it is followed across the horizon. The Reward Maximization

problem is unbounded when T goes to infinity unless a discounting factor is applied for

future rewards, e.g., defining RT =
∑T

t=1 γ
t−1rt where the Discounting Rate γ ∈ [0, 1].

The full reinforcement learning problem requires learning not only the reward func-

tion r(s, a) but also how the environment or state might change because of its action,

i.e., an unknown transition distribution P (st+1|st, at). Define Q(s, a) as the accumula-

tive reward or value of taking action a in state s and then following the best policy π′

afterwards. The algorithm that iteratively estimates Q(s, a) (instead of r(s, a)) accord-

ing to the following Bellman equation is called Q-learning, where s′ is the next possible

s after taking action a in state s. Q-learning solves the reinforcement learning problem

with the solution π′(s, a) = argmaxaQ(s, a)

Q(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)argmaxa′Q(s′, a′) (6.8)

In applying Q-learning in real-world problems, we usually assume a parametric form

for the Q function Q(s, a). e.g., in [40], an ensemble of trees are used. In this work, a

simple linear function is used (see the Method section). At the beginning of running

the algorithm, the parameters of Q is randomly initialized based on which the right-

hand side of Equation 6.8 can be calculated. Then Q(s, a) adapts itself (by changing

parameters) to fit the right-hand side value. This process is iteratively done until Q(s, a)

converges.

6.3.4 Regret Minimization

If we make the assumption that a does not have an effect on the state s, i.e., st is I.I.D

samples of an unknown distribution P (s), the reward maximization problem can be

converted to the problem of minimizing the regret of a policy compared with the best

policy π′ in an assumed family of policies, i.e., the following Regret Minimization [132]

86

problem:

π∗ = argminπ

T∑
t=1

(r(st, aπ′,t)− r(st, aπ,t)) (6.9)

Following is a list of the key theoretical differences between the Regret Minimiza-

tion problem (shortened as RM) in Equation 6.9 and the Empirical Risk Minimization

(shortened as ERM) problem in Equation 6.2.

• The RM problem assumes st ∼i.i.d P (s) while the ERM problem assumes xt ∼i.i.d
P (x) where x = (s; a).

• The algorithm to solve the RM problem is through online learning. That is, learn-

ing as t goes from t = 1 to T (effectively reading data once) while the algorithm

to solve the ERM problem is iterative typically by reading the observation data

multiple times, e.g., the SGD algorithm.

• There is a difference in terms of On-policy vs. Off-policy for the algorithm of

the RM problem while the algorithm of the ERM problem does not have such as

difference. This distinction actually derives from the first one. When assuming

xt ∼i.i.d P (x), the distribution of the observations is fixed although unknown.

In contrary, if only st ∼i.i.d P (s) is assumed, different policies or algorithms can

observe different distributions of at, r(s, a) (which is closer to reality) and hence

learn differently. This makes the evaluation of the algorithm for the RM problem

hard because the ideal evaluation (many off-policy evaluation methods have been

proposed in the literature with certain limitations [133]) takes actual running of

the algorithm or policy in the system, e.g., through live experiments, which is

done in this research.

6.3.5 Contextual Bandit and LinearUCB

The Contextual Bandit [35] has the same objective as the regret minimization problem

in Equation 6.9. In our notation, s = (u; c) is considered as the context and both s and

a are represented as feature vectors (contrary to the discrete value space in the Multi-

Armed Bandit [35] problem), e.g., the vectors of user profile or item attributes. A well-

studied algorithm for the contextual bandit problem which is also used in this research

87

is LinearUCB [35]. LinearUCB makes further assumptions about r(s, a) to simplify the

problem in Equation 6.9. Specifically, it assumes (r|x = (s; a)) ∼ Gaussian(xT θ, σ),

i.e., the expected reward is linearly related to the input feature vectors. For the purpose

of explaining the method of this research, the LinearUCB algorithm is elaborated as

follows in Algorithm 1 with the notations in this chapter. See [35] for a theoretical

bound of the regret of this algorithm.

Algorithm 1: The LinearUCB algorithm

Data: A sequence of s = (u; c) while the algorithm is running in the system.

The system has M possible actions (items), each of which represented by

a feature vector a. Denote xt,k to be (st; ak) for k = 1, 2, ...,M .

Parameters:α, β, d is the dimension of xt,k

Initialization: A = βId, h = 1d, i.e., equal weights for all input features.

1 for t = 1, 2, ..., T do

2 θt = A−1h

3 for k=1, 2, ..., K do

4 r̂st,ak = xTt,kθt + α
√
xTt,kA

−1xt,k

5 end

6 Take action at = argmaxkr̂st,ak , let xt = (st; at)

7 Receive actual reward feedback rt

8 A← A+ xtx
T
t

9 h← h+ xtrt

10 end

Result: θT

Note that in real systems, a page of items will be recommended at one time t instead

of a single-item action. In this work, we update Step 6 in Algorithm 1 to take K actions

or items a1, a2, ..., aK at the same time t and we observe the user feedback for all items

and then Step 8-9 are executed for each of them.

6.4 Method

We conducted an online field experiment on MovieLens to answer our research questions.

To better understand the effects of recommendation algorithms on user engagement, we

88

define the following two categories of user actions on recommendations.

• Positive Actions are defined as high ratings (rating¿=4.0), clicking to see details

of movies or adding movies into a wishlist.

• Negative Actions are defined as low ratings (rating¡=3.5) or clicking the “not

interested” icon.

The experiment follows a between-subjects design, i.e., a user is randomly and

persistently assigned into one of the six recommenders in Table 6.1 (all users need

to sign in to use the site features). During the experiment, when MovieLens users visit

the front page, we display a prominent invitation link at the top asking users whether

they would like to experience a new recommender. If they click the link, an informed

consent page is displayed where we briefly introduce the purpose of the study (not the

experiment details). Users can either accept or decline to participate in the experiment.

If the user accepts, we randomly assign the user persistently through the experiment

into one of the six recommenders. After that, this user’s site browsing is powered by the

assigned recommender, including the item display in the top recommendation section

of the front page, the recommendation explore page (potentially with additional user

specified filters, e.g., genres or release dates). Users can click a link at the top right

corner of the site to opt out from the experimental recommender anytime going back to

their original recommender. If a user chooses to opt out, the user cannot go back into

the experiment anymore. This study was approved by the Institutional Review Board

of our organization.

6.4.1 The Six Recommenders

Table 6.1 lists the six recommenders we build for the experiment. For all of the Lin-

earUCB algorithms, we set the exploration parameter α = 0 and prior β = 1 (since

there is natural exploration because we make a page of recommendations at once, we

leave the study of the exploration effect as future work). For the latter four recom-

menders (Bandit-* and Reinforce-State), besides predictions made by MF-Rating and

MF-Action, another two factors from item attributes are introduced: Recency and Pop-

ularity as defined in the following list. In order to fairly combine these four factors at

89

Table 6.1: The six recommenders studied in this work
Recommender Input Output Model Algorithm

MF-Rating
u: user ID
a: item ID

y: rating
Equation 6.3 for f
Equation 6.4 for L

SGD in Equation 6.7

MF-Action
u: user ID
a: item ID

y: positive action
or not

Equation 6.3 for f
Equation 6.5 for L

Same as MF-Rating

Bandit-Two
a = (a1; a2)
a1: predicted rating
a2: predicted action

r: positive action
or not
on-policy

θ = (θ1; θ2)
E(r(a)) = aT θ

LinearUCB in Algorithm 1

Bandit-Four

a = (a1; ...; a4)
a1, a2: Same as Bandit-Two
a3: recency of item ID
a4: popularity of item ID

Same as Bandit-Two
θ = (θ1; ...; θ4)
E(r(a)) = aT θ

Same as Bandit-Two

Bandit-State

x = (s; a)
a: Same as Bandit-Four
s = (s1; ...; s4)

si = 1
Nu

∑Nu
j=1 ai,j ,

for i = 1, ..., 4

Same as Bandit-Four

θ = (θ(a); θ(s))

E(r(s, a)) =
∑4

i=1 ai · θ
(a)
i

+ai · si · θ(s)i

Same as Bandit-Four

Reinforce-State Same as Bandit-State

rt = 1 if the user
returns in a week
and t is the end
of a session
rt = 0 otherwise

θ = (θ(a); θ(s))
Q(s, a) is in Equation 6.10

Q-learning in Algorithm 2

the beginning (since they are in different scales), we map them into percentiles looking

at one year of historical recommendation data. By default, these four factors refer to

percentiles instead of the raw values in the rest of the chapter.

• predicted rating : the predicted rating of MF-Rating for a user ID on an item ID.

• predicted action: the predicted positive action probability of MF-Action for a user

ID on an item ID.

• recency : the release year of the movie item

• popularity : the total number of ratings on the movie in the system

Reinforce-State recommender is inspired by the theory of UT-AUT [87] in which the

ultimate goal of a technology could be optimizing for user adoption or acceptance. While

whether we can directly optimize for user acceptance is an unanswered question, we set

out to approach it by employing Q-learning techniques that can handle delayed reward

feedback. Reward here becomes whether the user returns within a certain period of time

(one week is used in this work). That is, whether a user’s session with a recommender

system is good or bad is determined by whether the user will come back with a new

session within the coming week, as illustrated in Figure 6.1. The same linear function

is used as in Bandit-State recommender to approximate Q function for the purpose of

90

Figure 6.1: An example illustration of utilizing delayed user feedback user return as the
learning signal.

fair comparison across recommenders as in the following Equation 6.10. Note that it

also models the interaction effects of a and s.

Q(s, a) =
∑
i

ai · θ(a)i + ai · si · θ(s)i =
∑
i

ai · (θ(a)i + si · θ(s)i) (6.10)

We also need to model user state and its transition in order for the Bellman Equa-

tion 6.8 to run (i.e., we employ a model-based Q-learning instead of model-free [126]).

From the theory UT-AUT [87], important psychological metrics characterize the user

state, which however is unobservable. The PO-MDP [36] model is designed for this case,

but to have better experimental control, tractability and model interpretation, we use a

deterministic state transition model. As shown in Table 6.1, we characterize the current

user state s as the aggregate means of the four involved factors calculated on all his-

torically recommended items (with size Nu) to the user u. Then the state transition is

straightforward when we make a new recommendation as follows in Equation 6.11 (i.e.,

re-calibrating the means). Based on this transition model and the Bellman Equation

6.8, Algorithm 2 shows in details how we train the Reinforce-State model targeting the

delayed reward user return. In the algorithm, Steps 8-9 are equivalent to a LinearUCB

update step with exploration parameter α = 0, i.e., using the LinearUCB algorithm as

an online algorithm to estimate the linear Q function. Figure 6.2 shows the learning

process of the Reinforce-State model. The shape of the curve shows a trend of conver-

gence after 20 epochs. It also reflects that this recommender tends to recommend items

that after being displayed users have more sessions afterwards. Note that Q-learning is

an off-policy algorithm and hence can be trained on historical data although the quality

91

of the estimated Q values depend on how well the state and action spaces are already

explored in the data set.

s′i(si, ai) =
si ·Nu + ai
Nu + 1

, i = 1, ..., 4 (6.11)

Algorithm 2: The Q-learning algorithm for Reinforce-State recommender.

Data: A sequence of (userIDt, itemIDt, returnt) where t = 1, ..., T . returnt is

pre-calculated by organizing the historical data as sessions and setting

returnt = 1 if t is the last recommendation of a session and the user has

another session within the coming week. Otherwise, returnt = 0

Parameters: The maximum number of rounds: epochmax; learning rate η; the

number of features d = 8 here

Initialization: Initialize A = αId, h = β1d; Pre-train the models of MF-Rating

and MF-Action

1 for epoch = 1, 2..., epochmax do

2 for t = 1, 2, ..., T do

3 Calculate (st; at) by making predictions on (userIDt, itemIDt) using

MF-Rating and MF-Action models.

4 Calculate s′ based on Equation 6.11.

5 θ = (θ(s); θ(a)) = A−1h,

6 Calculate Q(s′, a) for all possible a based on Equation 6.10 (which

involves making predictions for userIDt on all item IDs with MF-Rating

and MF-Action models to get a)

7 Calculate the right-hand side of the Bellman Equation 6.8. Denote the

value as Q′t.

8 A← A+ (st; at)(st; at)
T

9 h← h+ (st; at)Q
′
t

10 end

11 end

Result: θepochmax,T

The models of MF-Rating, MF-Action and Reinforce-State are trained offline, while

the three models of contextual bandits learn online (on-policy). During the experiment,

92

3.0e+06

3.5e+06

4.0e+06

5 10 15 20
Number of training epochs

S
um

 o
f Q

 v
al

ue
s

Figure 6.2: The Q-learning curve in training the reinforcement delayed reward model
using one year of historical data. The y-axis is the sum of Q-values for all t = 1, ..., T
in each epoch on the x-axis.

we train the three offline models in batch every week using the past one year of historical

data (around 52M movie displays with 2M positive actions and 2.1M ratings; note that

the majority of user activities in the site are ratings). We see accuracy gains when

using recent one year of data compared with using all historical data evaluating in

a temporal way (i.e., training on historical data excluding the most recent week and

testing on this most recent week of data). The accuracies on average are 0.957 in testing

RMSE (Root Mean Squared Error), 0.735 in testing MAE (Mean Average Error) for

the rating prediction model, and 0.703 in testing AUC (Area Under the ROC) for the

action prediction model.

When training the two models each week during the experiment, we use the recent

week of data as the validation set to avoid over-fitting (regularization parameters for

both bias and factor terms in Equation 6.3 are set to 1e-5, 20 epochs at maximum, 30

latent dimensions after tuning offline). Then we further update the trained models by

running the SGD steps in Equation 6.7 over the validation data once to make sure the

models are up to date. During the week before the next batch training, the models are

updated in real-time by running the same SGD steps once whenever the users rate or

browse movies in the site.

93

6.4.2 Objective Measurements

We measure the following objective activity metrics. In order to have better controlled

observations, we set an observation time window for one month, i.e., we only look at

each user’s activities for one month after the user joins the experiment. We exclude users

who joined the experiment too recently to collect data across the full time window. If a

user opts out from the experiment during the observation time window, we cut off the

data collection after the moment that the user opts out.

• #sessions: the number of sessions, i.e., how many session-level visits to the site

do users have. Each user has one observation for this metric.

• #frontView : the number of front page views. Each user has one observation for

this metric.

• #exploreView : the number of explore page views. Each user has one observation

for this metric.

• frontPositive: whether there is any positive action on the eight(top-K=8) recom-

mendations in the front page. Each front page view has one observation for this

metric.

• frontNegative: whether there is any negative action on the eight(top-K=8) recom-

mendations in the front page. Each front page view has one observation for this

metric.

• explorePositive: whether there is any positive action on the recommendations

(top-K¿=24) in the explore pages. Each explore page view has one observation

for this metric.

• exploreNegative: whether there is any negative action on the recommendations

(top-K¿=24) in the explore pages. Each explore page view has one observation

for this metric.

• optOut : whether a user opts out from the assigned recommender during the time

window. Each user has one observation for this metric.

94

6.4.3 Subjective Measurements

We also deploy surveys with the following list of question items asking users about

several perceptional aspects of the recommenders. For some of the classical metrics,

e.g., accuracy, diversity, novelty etc., we directly use the design of the prior research by

Pu et al. [86]. We designed the rest of the questions for measuring the specific aspects

that might be affected by our manipulation. While users are browsing recommendations

in the explore page, we prompt users through a banner or pop-up; we started with the

banner format and later turned to the pop-up format because the response rate of a

banner is too low to collect enough survey feedback. Each user is prompted twice at

maximum with the first and the second showing respectively three minutes or a week

after a user joins the experiment (and if they show up browsing the explore page). We

leave the survey link persistent on the page throughout the experiment so that users

can give feedback anytime.

• accuracy : The recommendations match my tastes in movies.

• diversity : The recommendations have a diverse selection of movies.

• novelty : The recommendations help me discover interesting movies that I did not

know.

• temporary interest : The recommendations reflect my recent interest in movies.

• attractiveness: I am interested in seeing or knowing more about the movies in the

recommendations.

• confusion: I get disoriented sometimes by the change of the recommendations.

• balance of recency : The balance between new and old movies in the recommenda-

tions is appropriate to me.

• balance of popularity : The balance between popular and less popular movies in

the recommendations is appropriate for me.

• understandability : I understand why the recommender is recommending the movies

in my top-picks.

95

• reactivity : The recommendations change appropriately in reaction to what I do

in MovieLens.

• satisfaction: Overall, I am satisfied by the recent recommendations from the rec-

ommender.

6.5 Results

Table 6.2: The coefficients (and standard errors in the parentheses) of the activity
metrics predicting user overall satisfaction. These estimates come from an ordinal re-
gression (cumulative link) model treating satisfaction response as ordinal values. Each
observation is a user who has answered the satisfaction question for at least once.

Activity Metric
Coefficient

(vs. Satisfaction)
log(#sessions) 0.524 (0.236)

log(#frontView) 0.0946 (0.213)
log(#exploreView) -0.446 (0.152) *
frontPositive rate 0.522 (0.368)
frontNegative rate -0.342 (0.302)

explorePositive rate 0.336 (0.245)
exploreNegative rate -0.052 (0.162)

Table 6.3: The coefficients (and standard errors in the parentheses) of the perception
metrics predicting user overall satisfaction. These estimates come from an ordinal re-
gression (cumulative link) model treating satisfaction response as ordinal values while
others as continuous values. Each observation is a user who has completed all the survey
questions for at least once.

Perception
Coefficient

(vs. Satisfaction)
accuracy 1.31 (0.282) *
diversity 0.595 (0.242)
novelty -0.0294 (0.198)

temporary interest 0.847 (0.297) *
attractiveness 1.07 (0.241) *

confusion -0.244 (0.167)
balance of recency 0.520 (0.209)

balance of popularity -0.0165 (0.209)
understandability 0.255 (0.204)

reactivity -0.198 (0.259)

The experiment was launched on Feb. 8, 2017 and the analysis was run on Aug.

96

Table 6.4: Means of both objective and subjective metrics for the six recommenders.
Significant differences after correction are marked with *. Metrics that are not presented
here do not show significant differences. The numbers in parentheses for #frontView and
#exploreView are standard errors. These estimates come from two negative binomial
regression models using MF-Rating as the baseline. The intervals for frontPositive rate,
frontNegative rate, exploreNegative rate are 95% confidence intervals. These estimates
come three mixed-effects logistic regression models using MF-Rating as the baseline
(treating user ID as a random intercept effect). The means of balance of recency and
satisfaction are calculated treating the survey responses as continuous values. The
coefficients in the parentheses come from a ordinal regression (cumulative link) model
using MF-Rating as the baseline (treating responses as ordinal values).

Recommender #frontView #exploreView
frontPositive
rate

frontNegative
rate

exploreNegative
rate

balance of recency satisfaction

MF-Rating 9.64 (0.733) 41.8 (4.47)
0.0740
(0.057, 0.0947)

0.0198
(0.0134, 0.0291)

0.175
(0.135, 0.224)

2.73 (N.A.) 2.89 (N.A.)

MF-Action 13.1 (1.00)* 72.6 (7.92)*
0.147 *
(0.120, 0.180)

0.0521 *
(0.0383, 0.0706)

0.330 *
(0.272, 0.393)

3.20 (0.879)* 3.03 (0.253)

Bandit-Two 14.1 (1.15)* 48.4 (5.58)
0.133 *
(0.105, 0.166)

0.0485 *
(0.0346, 0.0674)

0.308 *
(0.247, 0.377)

3.32 (0.969)* 3.00 (0.129)

Bandit-Four 13.9 (1.04)* 63.8 (6.78)*
0.125 *
(0.102, 0.153)

0.0471 *
(0.0350, 0.0631)

0.324 *
(0.268, 0.386)

3.04 (0.501) 2.78 (-0.170)

Bandit-State 9.63 (0.741) 41.4 (4.44)
0.140 *
(0.113, 0.173)

0.0605 *
(0.0445, 0.0818)

0.327 *
(0.264, 0.396)

3.26 (0.969)* 3.17 (0.485)

Reinforce-State 10.5 (0.828) 35.2 (3.92)
0.101
(0.0789, 0.128)

0.0405 *
(0.0286, 0.0571)

0.213
(0.164, 0.271)

3.13 (0.647) 2.62 (-0.436)

27, 2017. During this period, 1508 users joined the experiment for at least one month,

which gives us around 250 users for each recommender condition. They generated 12,627

sessions and 279,632 activities, including 92,289 ratings (41,651 of which ¿= 4.0), 34,587

clicks, and 12,919 wishlist additions. The remaining measured activities are mostly front

page and explore page views. In total, we collected 3887 survey responses which gives

us around 60 responses for each question on each recommender. We only use the last

response of a user on a question if the user has multiple responses on the same question

(we found using all survey responses of each user gives us the same results). We rely

on different types of regression modeling techniques (including their p-values and effect

sizes) treating MF-Rating as the baseline to draw conclusions and to avoid excessive

pairwise comparisons. In addition, we performed the Benjamini-Hochberg correction

procedure [107] to control the False Discovery Rate of the analysis (effectively using

around p¡=0.0053 as the significance level). Before doing the analysis, we confirmed that

the user activities were not significantly different for users in different conditions in terms

of our activity measurements during the one month before they joined the experiment.

This is to make sure that the effects come from our recommender manipulation.

97

6.5.1 Measurements Interpretation

We first conduct analysis to correlate user activity metrics and perception metrics with

the user’s overall satisfaction to understand how different types of activities and different

perception aspects of the recommender contribute to its success or failure.

Table 6.2 and 6.3 show the results of predicting user overall satisfaction with both

objective activity metrics and subjective perception metrics. We can see that perceived

accuracy and attractiveness (interest users to know more about the items) are the two

most important factors predicting user satisfaction. Whether recommendations reflect

users’ temporary interest is positively predicting satisfaction but with a smaller effect

size. Table 6.2 also shows that the amount of browsing (#exploreView) is negatively

associated with user satisfaction. The data shows a trend that higher positive action

rate corresponds to higher user satisfaction while high negative action rate corresponds

to lower user satisfaction.

6.5.2 RQ1

What are the differences between recommender systems based on explicit vs. implicit

user feedback data modeled with the classical matrix factorization algorithms?

The first two lines of Table 6.4 compare MF-Rating (based on explicit feedback data)

with MF-Action (based on implicit feedback data) on user objective activity measure-

ments. Our overall measure of user satisfaction was not signficantly different between

the two recommenders, but there are several differences in user activities. Specifically,

MF-Action significantly increases the front page view, explore page view, frontPositive

rate, frontNegative rate and exploreNegative rate. We find that in terms of the balance

of recency, MF-Action is perceived to be significantly better than MF-Rating.

We did not find significant difference for metrics of #sessions (mean: 4.9 per user;

similar analytical model as #frontView), explorePositive rate (mean=0.658; similar

analytical model as exploreNegative rate) and optOut rate (mean=0.185; a logistic re-

gression model) after correction. We did not find significant differences on the other

subjective measurements that we deployed after correction.

98

6.5.3 RQ2

Do multi-factor-blending recommendation algorithms lead to improved or changed user

experience and if so, how?

As shown in the rest of the Table 6.4, there is no significant difference on user satis-

faction, but we see potential useful differences on user experience and activities. Bandit-

Two recommender is very similar to MF-Action (sharing the benefit of increased front

page view engagement, front page positive action rate, the cost of increased front page

negative action rate and explore page negative action rate and improved perception of

the balance of item recency) except that it does not significantly increases the amount of

explore page view. From this aspect, Bandit-Two gains some potential benefit in terms

of user satisfaction over MF-Action because explore page view is negatively predicting

user satisfaction as shown in Table 6.2.

Bandit-Four recommender is almost identical to MF-Action in terms of net effects

on user activities although it has very different inputs and algorithms. In other words,

the introduced two additional factors (recency and popularity) compared with Bandit-

Two seem to only increase the amount of explore page browsing. Bandit-State does not

significantly affect the amount of front page view and explore page view, but significantly

increases users’ rate of actions compared with MF-Rating, including not only front page

positive action rate but also front page negative and explore page negative action rate.

Comparing with all previous recommenders, it seems to gain some benefits over MF-

Rating, MF-Action and Bandit-Four, but has some cost compared with Bandit-Two

because it loses the benefit of increased front page view engagement.

We did not find significant benefits in terms of the perceived balance of popularity

and recency for Bandit-Four (which explicitly models these two factors) compared with

Bandit-Two, MF-Action and MF-Rating, with our current model design. On contrary,

Bandit-Two and Bandit-State gains some benefit in the perceived balance of recency

compared with MF-Rating.

Reinforce-State recommender only has a significant negative effect on the front page

action rate compared with MF-Rating and loses more benefits compared with Bandit-

State and others. This is also consistent with our subjective measurements, where

Reinforce-State has a trend of hurting many perceptional aspects including perceived

accuracy, novelty and attractiveness compared with MF-Rating.

99

6.6 Discussion

The above section empirically demonstrates the differences between recommender sys-

tems based on user explicit rating feedback and implicit action feedback. Depending on

the goals of the system, different recommendation algorithms might be used.

If the goal is to increase engagement, then predicting implicit action is much more

effective than predicting explicit ratings. However, if the goal of the system is to improve

user satisfaction, we need to be cautious not to exclusively optimize for predicting

implicit action, because this type of recommender does not seem to be as precise as a

rating-based recommender, as reflected by the increased negative user engagement, e.g.,

negative action rate and increased user browsing effort. This observation points to the

future direction of exploring to learn from both positive and negative feedback with a

particular focus on penalizing items with negative user feedback.

Blending the two types of recommenders by optimizing for online user interaction

achieves the same level of user engagement as using implicit-action-based recommender

alone, but it does not lead to more user browsing, which seems to achieve a trade-

off between the goals of user engagement and satisfaction. We think this effect may

generalize to other algorithms modeling explicit or implicit feedback data because it

likely reflects the fundamental property of the two types of feedback signals instead of

the specific algorithms (although more studies are necessary to confirm). It also suggests

that if we truly want to capture user satisfaction, we might need to go beyond ratings

or actions, e.g., measuring how the system assists the user’s decision making tasks and

optimizing for it.

Lastly, if the goal of the system is to improve users’ perceived balance of recency on

the recommendations, blending the two types of recommenders helps with this goal as

well.

This work also provides design implications for future work on blending multiple

factors (i.e., ensemble of multiple recommenders) and utilizing user return as a learning

feedback signal for recommender systems. Based on our observation in this work, we

think that

• a better control is necessary (e.g., by introducing a broader set of observations on

the context of the user return) in order to use user return to explain whether a

100

session of recommendations are good or bad.

• the state (transition) model and the Q function approximation model need to

have enough power (e.g., linear models may not be enough as used in this work)

to capture both the actual user state (transition) and the complexity of Q value

(a projection of the future value of a recommendation). Recently, Wu et al. [134]

proposed to use recurrent neural networks for the state transition model and

demonstrated some benefits, which we think is a promising direction to try.

• the balance of recency or popularity are inherently personalized and high-order

(e.g., quadratic) because different users prefer different kinds of balance [125] and

hence going beyond linear models here might be necessary as well.

We studied several new perceptional metrics for recommendations different from

prior literature [86]. These factors are especially prominent in a live interactive rec-

ommender system, e.g., whether the recommendations reflect users’ temporary interest

(which might be only valid in the field), whether users are interested to know more about

the recommendations and whether users are disoriented by the change of the recommen-

dations (changing dynamics are common in live systems, e.g., Youtube, Amazon etc.).

We find interesting results that besides the perceived accuracy, whether recommenda-

tions can interest users to know more about them and reflect users’ temporary preference

are significant positive factors in predicting the overall user satisfaction. However, fu-

ture work is necessary to study the psychological constructs of these question items and

how they (together with the behavioral metrics) can be generalized to platforms that

directly involve user consumption (which could be a stronger type of implicit feedback

signals compared with the user interactions with movie information used in this study

and might demonstrate significant differences in these metrics).

Chapter 7

A Generic Recommender Server

7.1 Introduction

Recommender systems have been widely applied in various domains, e.g., e-commerce,

proactive information retrieval, personalized search, online entertainment etc. The core

problem of recommendation is selecting and presenting items from a usually large item

space, for which many effective algorithms and interfaces have been designed. Software

tools, libraries, systems also have been developed for building recommender systems

in various applications. Recommender system research has reached a tipping point

where user-centric and algorithmic research can be closely combined to improve the

user experience of recommender systems. However, we need new software tools to better

support this type of work. The key to provide support is to accelerate the process of

going from modeling and experimenting in an offline setting to online environments

where users are interacting with the design of the system in real-time. We designed and

developed a server framework to fulfill this goal. This chapter focuses on answering the

following questions: “what is going from offline to online for recommender systems, why

we want to go from offline to online and how?”

What is going from offline to online in recommender systems? Offline research or

work suggests that it does not involve a regularly running system in production used

by people. They might rely on a snapshot of data collected from online systems. In

this setting, algorithms designed are typically for batch processing, not for real-time

responding to user interactions. Online environment however involves a constantly

101

102

running system that deals with user requests and interactions in real-time whenever

a user visits. Two aspects of a research can go from offline to online: design and

evaluation. In the design aspect, it means designing for the user-system interaction

process, going beyond historical statistical assumptions, being explicit in modeling user

state changes with the environment. In the evaluation aspect, it means having the goal

of user experience in mind, evaluating interfaces, model and algorithm design in front

of people, answering questions of how these manipulations affect people in both lower-

level perception, higher-level cognition and more broadly user personal development and

social welfare.

Why do we want to go from offline to online in recommender systems? The reasons

of going from offline to online go into three perspectives. One is from the perspective

of studying the theories of human psychology and behavior. Recommender systems

are designed for people to use to accomplish certain goals or tasks. The research of

recommender systems largely involves people using the system and how we design com-

putational models or algorithms to describe and support these people’s tasks. From

this perspective, a recommender system is an artifact, stimuli or a way of manipulation

through which we study people. In this case, we have to put our system in front of

people for them to use.

Another perspective starts from the limitation of machine learning theories. Sim-

ply treating recommendation problems as statistical learning problems may not be the

right approach because there are mis-alignments between modeling assumption and the

reality. The environment is dynamic which constantly involves distribution shifting.

Recommender systems make real-time decisions in dynamic uncertain environments.

Algorithms designed to learn from dynamic environments needs to be tested in user-

facing systems to gain better ecological validity.

Lastly, a recommender system at its core is a decision-making support tool or infor-

mation navigational support tool. The ultimate goal is for user experience, satisfaction

and adoption of the technology. In the long run, we can better understand how rec-

ommender systems are affecting people’s life, e.g., answer the question of whether the

algorithm or design is improving or hurting the well-being of people.

How do we go from from offline to online in recommender systems? Going from

offline to online has benefits but also challenges. For example, when we think about

103

designing and evaluating a design in front of people, there are potentially two apparent

obstacles. One obstacle is the access to real users. Another one is the cost of system

implementation. In this work, we propose a generic recommender server framework

to reduce the cost of implementation by extracting out the common components of

recommender systems. Recommender system researchers or designers can now focus on

one part and then re-use other parts. The barrier of access to users can be potentially

overcome by designing user studies and recruiting people to try out new techniques

(e.g., from crowd-sourcing platforms, which however has limitation of generalization

because the participants might not be real users of the system). We also envision that

this server can become a open service that gathers and allocates application users as

resources. What we hope to achieve in the long-run is a recommender system research

platform where researchers and practitioners can easily plug-in their own design and get

evaluation out of it from various domains of applications if these applications are hosted

in the service. This work of designing a generic server is a necessary step in moving

towards that direction

7.2 Related Work

There are many softwares that have been built to support building recommender sys-

tems. We categorize these softwares into four categories: command-line tools, libraries

with programming APIs, (distributed) systems and servers (or services), as shown in

Table 7.1.

Some softwares implement specific models or algorithms, e.g., Apex SVDFeature

[21], SLIMx [8], MyMediaLite [135], LibFM [110], LibSVM [136] etc. which we catego-

rize as command-line tools.

Some softwares provide with implementations for multiple models or algorithms and

provide their capabilities through programming language APIs, e.g., Lenskit for collab-

orative filtering based algorithms [89], scikit-learn [90] and SparkML [91] for various

kinds of machine learning models. These also include many python, Java or R pack-

ages for building recommender systems. Researchers have developed general libraries

to build models with complicated structures, e.g., the recently popular platform Ten-

sorFlow [92]. Stan [93] also enables flexible specification of model structure and was

104

developed earlier than TensorFlow although it is more oriented towards offline data

analysis.

Some softwares implemented generic modeling techniques or algorithms to run in

clusters of machines. It could be specific models, e.g., xgboost [108], difacto [137] etc. It

could be general computation operators, e.g., TensorFlow [92]. We categorize these soft-

wares as (distributed) systems. Prediction.io [94] is a quite different distributed system

because it is service-oriented. It has production serving and maintaining components

and integrates a variety of models and algorithms through SparkML [91]. We categorize

it as a predictive or recommendation server if it is used in recommender systems.

The generic server designed in this work is novel because of the following reasons

(particularly compared with Prediction.io).

• Recommendation is different from machine learning, particularly retrieving and

ranking candidates are conceptually different, additional functionalities to provide

than building predictive models.

• In our server design, there is no hard separation between the event logging and

the serving of predictions or recommendations in the architecture level, which is

Prediction.io’ design. This is because data processing especially feature extraction

processes (described in details later) can be determined by specific recommenda-

tion models in the engine. This design enables the following two key benefits.

– The online and offline loop is closed and there is not a hard separation be-

tween offline model building and online model serving, which helps achieve

the goal of easily going from offline to online.

– Real-world applications of recommender systems require a data processing

and feature extraction framework that can flexibly take in different types of

data sources and utilize them in the model. Our design better addresses this

requirement as elaborated in details later.

In the following section, I describe in details the design goals, principles and specific

implementations of the generic server, which we open sourced on GitHub 1 and name

as Samantha.
1 https://github.com/grouplens/samantha

105

Table 7.1: A high-level comparison of the available softwares for building recommender
systems.

Software General Domain Software Type

Lenskit recommendation general tool/library

MyMediaLite recommendation general tool

SLIMx recommendation specific tool

libsvm
libFM

Apex SVDFeature
machine learning specific tool

scikit-learn
Weka

machine learning general library

dmlc xgboost
dmlc difacto

machine learning distributed system

dmlc mxnet
theano
caffee

tensorflow

deep(architectural/graphical)
machine learning

general library
distributed system

SparkML (Mahout) machine learning
general library

distributed system

Prediction.io machine learning
server

distributed system

Samantha
recommendation
machine learning

general library
server

distributed system

7.3 The Generic Server Design

Front-end user-facing clients,
e.g. browser, mobile app etc.

Application Server

Recommender Server

Users

Figure 7.1: The environment that the generic recommender server is designed for.

Samantha, as a generic recommender server, is designed with the environment il-

lustrated in Figure 7.1 in mind. It has four major parties: users, front-end user-facing

clients, application servers and recommender servers. The recommender server only

communicates with an application server, but not with the user-facing clients because

of security reasons. Typically they communicate with each other through the HTTP

106

(HTTPS) protocol, i.e., a recommender server is a web server similar to an application

server, but specially focused on recommendation tasks. Going from offline to online

means that the recommender server shipped with recommendation models and algo-

rithms needs to respond to real-time requests and interaction feedbacks from users.

To enable this real-time recommendation serving capability, the following function-

alities are necessary (this is what it takes to go from offline to online in summary for a

recommender system):

• data management, including data storage and processing pipeline in response to

user interactions or application content management

• model management, including online updating, building, loading, dumping and

serving of the models

• standard models and algorithms, e.g., collaborative filtering algorithms, machine

learning regression or classification techniques

• experimenting support, e.g., A/B testing, random or hashed, persistent assignment

of users into different experimental or control conditions

• real-time feedback loops, for online machine learning and evaluation

• extensibility for new model and algorithm design, e.g., the server can provide with

parameter abstraction for model designers to freely design new computational al-

gorithms on top of parameters without worry about where these parameters are

stored and how to scale them up to large models; the server can also support pa-

rameter estimation by providing general optimization techniques or classic solvers,

e.g., stochastic gradient descent, to optimize for flexible objectives that come out

from the model design process

• flexible model dependency, e.g., model ensemble through boosting, bagging or

stacking (i.e., multiple levels of model dependency)

• compatibility with other state-of-the-art systems, i.e., enable plugging in other

implementations of recommendation or machine learning algorithms, general li-

braries

107

In this section, I describe how Samantha is designed to support all of these func-

tionalities in a reusable, extensible and potentially scalable way so that researchers can

focus on the most relevant part but still have a fully-functional system to go from offline

to the online environment.

7.3.1 Recommender Components and Extensibility

In the server Samantha, Recommender Engine is referred to as a complete specifica-

tion of how a recommender works. It supports multiple recommender engines, which is

designed to scope applications. They are functionally similar to running multiple rec-

ommender servers. A recommender engine consists of eight types of components each

of which can have multiple ones: indexer, retriever, predictor, ranker, recommender,

router, evaluator, scheduler.

indexer. This type of component deals with data indexing in real-time when receiving

data from applications. Since it knows how the data is stored, it is also responsible for

outputting data from the behind storage for further batched data processing. By default,

Samantha provides with multiple types of indexer implementations corresponding to

different data storage back-end systems. Usually, one indexer is configured for one data

type, similar to a database table, although one indexer type is general enough to take

in any data types with different data fields. One can use one indexer for each data

type the application sends in because it eases the integration between the recommender

server and the application server. This will be elaborated in details later.

retriever. This type of component is responsible for retrieving candidates for a rec-

ommender engine. Recommender systems research typically focus on predictive model

and algorithm innovation ignoring the problem of retrieving in an actual recommender

system. Partially, it’s because there are not many online experiments reported in details

in academic and industrial research as to go into this aspect. However, when item space

is big and especially when the predictive model involves complicated computation, an

initial candidate generation process is a necessary component for a recommender engine.

Retriever can be simple and straightforward, e.g., retrieving all of the items or retrieving

the top popular items. It can be complicated and critical to have good recommenda-

tions, too. For example, we can build simple machine learning models in a retriever to

score all items and pick the top to generate candidates. Another possible approach is

108

to build fast associative models as an item-based k-nearest neighbor algorithm does, in

which candidates become those most similar items to a user’s previously liked items. We

can also blend multiple retrievers with different priorities, e.g., first using any results

produced by a personalized retriever and resort to non-personalized one when necessary.

predictor. This type of component is the core part of operationalizing machine

learning theories, roughly falling into the supervised learning domain. This is mainly a

wrapper for a machine learning model implementation, which is essential for enabling

Samantha to integrate with other machine learning libraries.

ranker. This type of component takes in an initial candidate item set and rank

them based on certain criterion which could just be the output score of a predictor

component.

recommender. In Samantha, a standard recommender is just the combination of a

retriever and ranker, i.e., a retriever retrieves initial candidates from the storage or an

initial model and feeds them into ranker to generate the ranked list.

evaluator. There are two standard types of evaluators. Prediction evaluator provides

the ability to compute prediction metrics for any predictor component. Recommenda-

tion evaluator evaluates any recommender component by computing top N recommen-

dation metrics.

router. This type of component implements how to find the right recommender or

predictor for a request, which is the foundation of A/B testing or between-subjects field

evaluation framework.

scheduler. This type of component supports calling model management interfaces

regularly with a predefined schedule, e.g., for re-training a machine learning model.

Extending the capabilities of the generic server involves providing specific type of

implementation for any type of recommender component that is relevant. For exam-

ple, if the research is about designing new types of predictive models, it then involves

implementing a predictor type after which the specification of the predictors in a rec-

ommender engine can be replaced with the new implementation but reuse the default

available types of other components.

109

7.3.2 Server Interface, Architecture and Scalability

Samantha can be summarized in simple words as a HTTP server embedded with a

recommendation framework. Before describing its interfaces and architecture, we first

introduce the design of the Data Access Object (DAO) interface. Whenever the server

interacts with outside data sources, it goes through a DAO implementation. All the

implementations of the DAO interface summarizes the server’s understanding on the

possible data formats that the server can take in. When a request wants to tell the

server to use a piece of data, it needs to tell the server which type of DAO is being used

and how to construct that DAO with additional parameters passed in in the request.

Samantha’s capabilities are provided to applications through three types of HTTP

interfaces: data indexing, model management, recommendation (prediction) serving.

This is the very front boundary of the server, through which the application server

interacts with. Figure 7.2 illustrates the processing flow of Samantha receiving different

types of requests.

Model management with parameters of component type, component name, model

name, model operation. When model management requests come, Samantha first rec-

ognizes which type of component it is, e.g., retriever or predictor and then finds the

specific component (there could be multiple components with the same type, e.g., mul-

tiple predictors). After this, the identified component will be constructed and do the

actual work of managing its models. The request will also pass in DAO information

if the model management task involves reading and processing a piece of data, e.g.,

training a machine learning model with a given data source.

Data indexing with the parameters of indexer name, DAO information. If data are

sent in for indexing, the server finds the specific indexer based on the indicated name in

the request and ask the indexer to index data into the back-end storage system. Indexers

support subscribers which means the application can ask to pass those data to other

components at the same time in addition to being indexed so that other components can

update themselves in real-time, e.g., updating a machine learning model in a predictor

according to an online optimization algorithm.

Recommendation and prediction serving with the parameters of user identification,

context information. If the application server is requesting recommendations or predic-

tions, Samantha first asks a router to identify a recommender or predictor. Then the

110

identified recommender or predictor is responsible for generating recommendation or

prediction results. Before returning results, a wrapping process writes relevant infor-

mation on the working recommender or predictor into the response in order to let the

application know who generates the results (together with logging by the application,

this enables analysis and comparison among different predictors or recommenders).

Router
Indexer for
data type a

Predictor

Retriever

Ranker

Model management Recommendation and
prediction serving Data indexing

Predictor

Recommender

Retriever

Recommender

Ranker

Config
Service

Indexer for
data type b

Indexer for
data type c

…...

Storage
Service

…...

…...

…...

…...
Evaluator

Evaluator
…...

Subscribers

Subscribers

Subscribers

Figure 7.2: Samantha Data and Request Processing Flows. The directions of the arrows
represent data flow and component dependencies.

Data processing pipeline

The data processing pipeline in Samantha consists of two concepts: data expanders and

feature extractors. Data expanders are motivated by the observation that a complex

model building requires data that goes beyond what one data type can offer or the raw

content, interaction data sent in by the application requires future processing before

being used for building models. Feature extractors are motivated by the observation that

machine learning models require design matrix in which each data point is represented

as a numerical vector containing the values of variables to be modeled, each of which is

associated with certain parameters to estimate (e.g., simple scalar coefficient or vector

111

embedding) depending the model design.

There are four common types of expanders: data joining, predictor based expander,

filtering, (grouping and then) merging. We illustrate these expanders with an example.

Imagine an application sends in a data point which is a tuple of user ID, item ID and

rating. In order to build a potentially complex rating prediction model, we need to

expand this data point according to how the rating prediction model is designed. For

example, this model might relies on another model that tries to estimate how much

the user likes tags of the item. We first need an expander that can communicate with

the data storage service (e.g., a relational database) for the tags of the item. This is a

generic data expander because it is performing key-based query in a data service and

join the search results with the data point. The next expander we need is a predictor

based expander that takes in this data point and expands it with another model’s

predictions (assuming the user-tag preference model has been built in a predictor). If

we want to exclude ratings that are out of the range [0.5, 5.0] because those might

be invalid ratings or ratings designed for other purposes by the application, we need

another filtering expander that filters the data point according to the criteria. If the

rating prediction model actually needs all the user’s rating history (e.g., SVD++ [15]),

having access to such individual ratings after querying the data storage service, we

need a merging expander that combines all the previously rated items of the user into

one data field and join it with the current data point. Grouping expanders might be

needed when we are training a SVD++ prediction model (through model management

requests) while the rating data provided by the DAO are individual ratings not grouped

by users yet.

Even if we have all data fields available in the data point, a statistical model can not

use it yet because it needs a numerical vector representation. This requires mapping a

data field into an index space with which a corresponding parameter space is created.

For example, user ID needs to be converted to an index that refers to its bias parameter

in a vector parameter space or its latent factor parameters in a matrix parameter space

for a standard matrix factorization model [18]. This is exactly what feature extractors

are designed for. Each feature extractor takes in a data point and convert the relevant

data field to be an index and a value (named collectively as a feature). For categorical

112

fields like user IDs, the value here is usually one, but for numerical variables (e.g., pre-

dicted tag preference), the value here is the predicted preference score. After processing

through a list of feature extractors, we have a numerical vector representation of a data

point which can further be used by statistical models now.

Feature extractors rely on the capability of converting any string into the index of

a densely organized variable or parameter space, which is referred as index space.

Why is this scalable?

The scalability of the server can be explained in three aspects. First, model size can

go beyond what a single machine can hold utilizing distributed model training through

the parameter server paradigm. Second, data sets can go beyond what a single machine

supports and utilizing distributed storage system. Third, the serving of recommenda-

tion and predictions can be duplicated across multiple server clusters responding to

potentially a large number of requests at the same time.

7.3.3 Using the Server

To use the server framework, what researchers and practitioners need to do now become

1. configure a recommender engine (explained below) to specify how each part should

run

2. if the currently implemented state-of-the-art models or algorithms can not be used

or the research itself is about new models or algorithms, design and develop new

models or algorithms following the server framework

3. send in data generated by application content management or users interacting

with the application front-end clients

4. ask for recommendations or predictions in real-time

A minimum recommender engine requires specifications on what data will be stored

and how they are stored when data comes in in real-time, how an initial set of candidates

will be retrieved and how to rank the candidates based on the prediction of a user

113

preference model. Assuming a standard matrix factorization model predicting user-

item ratings, we illustrate below how to set up an engine in the recommender server to

respond to application users in real-time.

indexers: One indexer that supports indexing user-item rating data into the server

• name: UserItemRatingIndexer

• implementation: database based indexer (e.g., MySQL database based indexer)

• data fields: user ID, item ID, rating, time-stamp

retrievers: One retriever that retrieves all available items in the database store of

the item data (note that the retrieved item list needs an expander to set the current

user ID in the request)

• name: AllAvailableItemsRetriever

• implementation: database based retriever (e.g., MySQL database based retriever)

• table: ItemData

• retrieved fields: item ID

• expanders: set the user ID data field in the request into the retrieved list of item

data

predictors: One predictor that builds and maintains a matrix factorization model

[18] with user, item bias terms and user, item latent factors.

• name: MatrixFactorizationRatingPredictor

• implementation: matrix factorization model based predictor

• feature extractors:

– user bias extractor: convert user ID into the user index in the bias parameter

space named as UserBias

– item bias extractor: convert item ID into the item index in the bias parameter

space named as ItemBias

114

– user factor extractor: convert user ID into the user index in the latent factor

parameter space named as UserFactor

– item factor extractor: convert item ID into the item index in the latent factor

parameter space named as ItemFactor

• model loss: L2-norm loss (regression)

• learning method: stochastic gradient descent

rankers: One ranker that ranks based on the predicted rating of the above rating

predictor

• name: RatingPredictorBasedRanker

• implementation: a predictor based ranker which first makes predictions on a list

of retrieved candidates and rank the list according to the predictions

• predictor name: MatrixFactorizationRatingPredictor

recommenders: One recommender that retrieves a candidate list and then ranks it

based on the above ranker

• name: StandardRecommender

• implementation: a recommender that first retrieves a list of candidates with a

retriever and ranks the candidates with a ranker

• retriever name: AllAvailableItemsRetriever

• ranker name: RatingPredictorBasedRanker

schedulers: One scheduler that trains the rating prediction model every day by

taking in data from the indexed user-item ratings (note that the indexer supports both

indexing, i.e., data in, and outputting, i.e., data out). Without this scheduler, the

application server can still regularly sends in model management requests (described

above section) to update the model.

• name: TrainingRatingModelScheduler

115

• implementation: a scheduler that mimics a model management request

• schedule: every mid-night

• request context: all available data in the indexer UserItemRatingIndexer

7.4 Case Studies

In this section I describe three case studies that demonstrate a) this server framework

can easily integrate with state-of-the-art machine learning libraries and systems; b) this

server framework enables complex online experiments with multi-level model dependen-

cies or many important factors to model.

7.4.1 Extension and Integration

Integrating the generic server with other libraries or systems involves implementing a

recommender component. This is exactly the same as writing its own implementation

of a recommender component within the server. For example, the server provides with

the implementation of a type of predictor based on the modeling technique SVDFea-

ture [21]. When the component involves complex learning models or algorithms, the

server provides support to further simplify by defining interfaces for the new component

to implement. The interfaces for any recommender component that involves complex

statistical machine learning models are as follows:

• LearningInstance: A feature list (or numerical vector) representation of a data

point

• LearningData: An iterable set of LearningInstance representing a data set

• LearningModel : A complete representation of a model being able to extract fea-

tures for a data point to get LearningInstance representation and make predictions

on a LearningInstance

• LearningMethod : Train or update a LearningModel with a LearningData

116

TensorFlow

TensorFlow [92] is one of the most widely used machine learning libraries and systems

nowadays. The powerful capabilities of TensorFlow enable not only flexible incorpo-

ration of data available in real-world applications, but also the flexible design of the

modeling structure. We show here that the server framework we designed can easily

integrate TensorFlow so that any recommendation models that are designed in Tensor-

Flow with any type of computational graphs can run in the generic server leveraging

the data processing pipeline, model management interfaces in Samantha.

Correspondingly, the integration takes the following implementation following the

server framework (note that this integration is agnostic to the computational graphs):

• LearningInstance: A dictionary of tensors (called feed dictionary in TensorFlow)

where the key is the name of the tensor defined in the computational graph and

the value is the tensor representation of a data point

• LearningModel: Extract features by utilizing feature extractor interfaces and con-

vert the list of indices and values into a TensorFlow specific LearningInstance;

make predictions by feeding in the dictionary of tensors and running a specified

operation in the computational graph

• LearningMethod: Iterate over a LearningData that outputs TensorFlow specific

LearningInstance, feed in the dictionary of tensors and run a specified model

updating operation in the computational graph (e.g., a minimizer over a loss in

the graph)

• predictor: When responding to prediction requests, this TensorFlow specific pre-

dictor asks the TensorFlow specific LearningModel to make predictions on the

input data points. When responding to model management requests, it dele-

gates the server to interpret a specific DAO and asks the TensorFlow specific

LearningMethod to update or train the model with the DAO based LearningData

representation.

Imagine that we want to run a TensorFlow graph defining a SVD++ [34] model. For

simplicity of illustration, we dropped the bias terms here which then gives the following

117

prediction function, where U , Q and V are user, implicit action and item latent factor

matrix and I is the set of items rated by user u.

f(u, I, a) = (Uu +
1

2
√
|I|

∑
i∈I

Qi)
TVa (7.1)

The simplest definition of the a TensorFlow graph would be taking in four tensors

(ignoring the bias terms for simplicity of illustration): a tensor (ImplicitFactor) with

items rated by a user (note these items need to be indices referring to a matrix parameter

space which suggests that the item IDs in the data sources should go through the feature

extracting process in the data processing pipeline mentioned above), a tensor with the

user (UserFactor, similarly an index referring to a matrix parameter space), a tensor

with the target item (ItemFactor, similarly an index) to make prediction on and a tensor

(Rating) with the actual rating given by the user on the item. To move this TensorFlow

graph from offline to online in the generic server, we replace the predictor in section

7.3.3 with the following (note that it assumes the input data point has a data field with

all the rated items by the user which can be easily achieved through the data expanders

in the data processing pipeline of Samantha).

predictors: one predictor that is based on the TensorFlow predictor type

• name: TensorFlowSVDPlusPlusRatingPredictor

• implementation: the above mentioned TensorFlow specific predictor type

• graph: a file path pointing to the definition file of the TensorFlow graph

• feature extractors:

– user factor extractor: convert user ID into the user index in the user latent

factor parameter space named as UserFactor

– item factor extractor: convert item ID into the item index in the item latent

factor parameter space named as ItemFactor

– implicit action extractor: convert a list of item IDs into the the item indices

in the implicit action latent factor parameter space named as ImplicitFactor

– rating value extractor: output the rating value as it is named as Rating

118

xgboost

xgboost [108] is also one of the widely used machine learning systems in various domains

including recommender systems, e.g., GBDT has been used in Yahoo! News recommen-

dation [138]. Similarly, we show that xgboost can be easily integrated into the server

framework and accelerate the process of moving a xgboost-based recommendation sys-

tem from offline to online.

• LearningInstance: A labeled feature map from the feature index to feature value

as required by xgboost

• LearningModel: Extract features by utilizing feature extractor interfaces and con-

vert the list of indices and values into a xgboost specific LearningInstance; make

predictions by getting results from a xgboost Booster

• LearningMethod: Iterate over a LearningData that outputs xgboost specific Learnin-

gInstance to create a xgboost specific data iterator and ask the xgboost library to

train the xgboost LearningModel with the data iterator.

• predictor: When responding to prediction requests, this xgboost specific predictor

asks the xgboost specific LearningModel to make predictions on the input data

points. When responding to model management requests, it delegates the server

to interpret a specific DAO and asks the xgboost specific LearningMethod to train

the model with the DAO based LearningData representation.

7.4.2 Online Recommender Blending

A challenge of running recommendation models and algorithms in an online setting

where application users can interact with the system any time lies at the continuous

management of data and models, and dealing with complex multi-level model depen-

dency. Samantha has been used by MovieLens to provide personalized movie recom-

mendations [139]. Here I describe how one of the recommenders was implemented in

Samantha which is based on the techniques of matrix factorization and LinearUCB [35].

The recommender has two levels of model dependency. In the first level, there

are two matrix factorization models predicting rating (f1(u, a) in Equation 7.2) and

119

action probability (f2(u, a)) respectively (where action is binary representing whether a

displayed movie was interacted by the user or not). Conceptually, these two models are

estimating how much a user might like a movie (predicted rating) and how likely a user

might interact with a movie (predicted action probability). In the second level, there is

one LinearUCB model that combines the predicted rating and action probability of a

user-item pair to maximize the online interactions from users as a reward function by

estimating the best set of weights for the two predictions. The label value of r∗(u, a)

also takes the value of either zero (when a movie is displayed but there is no action) or

one (when a movie is displayed and also acted upon by the user).

r∗(u, a) = β1 · f1(u, a) + β2 · f2(u, a) (7.2)

With already implemented predictor types supporting the matrix factorization and

LinearUCB models, moving this recommender from offline to online environment does

not need any additional implementation by using the following specifications in the

recommender engine (continuing the minimum recommender engine example in Section

7.3.3).

indexers: One indexer that supports indexing user-item action data into the server

• name: UserItemActionIndexer

• implementation: database based indexer (e.g., MySQL database based indexer)

• data fields: user ID, item ID, action, time-stamp

predictors: One predictor that builds and maintains a matrix factorization model

[18] to predict action probability.

• name: MatrixFactorizationActionPredictor

• implementation: matrix factorization model based predictor

• feature extractors: the same as MatrixFactorizationRatingPredictor

• model loss: logistic loss (binary classification)

• learning method: stochastic gradient descent

120

Another predictor that online estimates a LinearUCB model to dynamically combine

rating and action prediction models.

• name: LinearUCBActionPredictor

• implementation: LinearUCB model based predictor

• data expanders:

– a predictor based expander that expands with the predicted rating of Ma-

trixFactorizationRatingPredictor

– a predictor based expander that expands with the predicted action probabil-

ity of MatrixFactorizationActionPredictor

• feature extractors:

– predicted rating value extractor: convert the predicted rating into a repre-

sentation with both the blending weight index in the LinearUCB model and

the predicted value

– predicted action probability value extractor: convert the predicted action

probability into a representation with both the blending weight index in the

LinearUCB model and the predicted value

• learning method: LinearUCB specific learning method

schedulers: One scheduler that trains the action prediction model every day by

taking in data from the indexed user-item actions.

• name: TrainingActionModelScheduler

• implementation: a scheduler that mimics a model management request

• schedule: every mid-night

• request context: all available data in the indexer UserItemActionIndexer

121

7.4.3 System-Level Cold-Start

One goal of Samantha is to support researchers who are interested in answering ques-

tions about how a predictive system or recommendation system affect user experience

or user tasks. In this case study, we demonstrate how to set up a recommender server,

with the minimum amount of implementation but without losing the flexibility of in-

corporating important factors in the domain, to study a new system that recommends

emails to a user of an email client based on the user’s calendar schedule [140]. We

assume application developers have access to emails in a user’s “inbox” or “sent” folder

and the user’s calendar schedule in the upcoming week after getting permission from

the user (i.e., acting as a agent for the user). Imagine that the application is a plugin

for the email client that can proactively recommend potentially useful emails to the user

based on the user’s next upcoming meeting.

One can imagine a condition where the application provides an interface that enables

real-time feedback from users so that users can tell the system whether the displayed

emails are useful to the user’s upcoming meeting or not (if the users want to) and the

system interactively evolves by learning from this feedback. Alternatively, the system

can directly learns from implicit user interactions, e.g., treating hovering on or clicking

the recommended email as positive signals. A particular reason that we want the system

to learn in real-time is that the system does not have any usefulness feedback (neither

explicit usefulness judgments or implicit interaction). The specification below following

the recommender server framework we designed illustrates that it only takes minimum

customization in the feature extraction process to have a production-ready recommender

system for the project. All we need is a predictor specification similarly based on the

LinearUCB model (other predictor types can be used as long as the predictor support

online model learning or updating). Note that it assumes the input data sent by the

email client (proxied by a secured application server) has four data fields for each data

point: people involved in the email and meeting, content of the email and the meeting,

i.e., the application is asking (in the phase of requesting predictions) and telling (in the

phase of training the model) the recommender how much useful a list of emails might be

to a meeting. The researcher might hypothesize the content similarity between the email

and meeting and the overlap of the sets of people involved are potentially important

factors.

122

predictors: One predictor that online estimates a LinearUCB model to dynamically

combine multiple factors that might be important for predicting the usefulness of emails

to a meeting.

• name: LinearUCBEmailMeetingUsefulnessPredictor

• implementation: LinearUCB model based predictor type

• feature extractors:

– email-meeting content similarity extractor: compute the similarity between

the content of the email and meeting, set the extracted feature to be the

parameter index of this factor and the computed similarity value

– email-meeting people overlap extractor: compute the overlap between the

sets of people involved in the email and meeting, set the extracted feature to

be the parameter index of this factor and the computed overlap value

If the research develops customized complex modeling technique for predicting the

usefulness of an email to a meeting, e.g., implementing natively in the server or designing

computational graphs in TensorFlow, the process of having this new technique take

effects in front of users (or recruited participants) to get user feedback or user-centric

evaluation can still be accelerated by using some of the components of the recommender

server.

7.5 Discussion

In this work, we propose that recommender system research and practice can benefit

from going from offline to online environments because it better connects the user-centric

research and offline algorithmic and modeling research in recommender systems. In the

long run, it can help answer the important questions of how recommendation technolo-

gies affect user perception, experience, satisfaction and people’s life. We demonstrate

that we can support this type of work by designing generic server frameworks. We

provide an example framework along with case studies to show that this framework can

support real world applications and potentially fulfill the goal of accelerating going from

offline to online.

123

We recognize that not all research can benefit from following this approach. For ex-

ample, computational questions for specific recommendation algorithms might be well

answered with offline data experiments. Similarly, questions regarding user factors that

are independent of algorithmic manipulation can be well answered by designed exper-

imental tasks for users to accomplish without involving field usage of a system. For

either type of work, following this server framework might incur significant overhead

because it introduces constraints or additional work (e.g., working with and maintain-

ing a server environment). Overall, this work makes contribution by supporting an

important thread of research in recommender systems where complex modeling and

algorithms are combined with user-centric design and evaluation.

Chapter 8

Conclusion

User interaction is present in all user interfaces including recommender systems. Un-

derstanding user factors in interactive recommender systems is important for achieving

better user experience and overall user satisfaction. Many prior works in recommender

systems consider recommendation as a content selection process and there is not much

prior work focusing on studying user interaction. My thesis studies several factors while

real users are interacting with online recommender systems and answers a series of

questions regarding those factors.

Assuming modern recommender systems presenting grids of recommendations to

users page by page, we first studied user visual attention, i.e., asking whether users pay

attention to the displayed recommendations. We conducted initial research on modeling

and predicting gaze in recommender systems with a grid-based interface. We applied

HMM in this setting and achieved significant accuracy improvement in predicting fix-

ation probability. We also showed that incorporating eye tracking data from a small

number of users into the model training significantly boosts accuracy compared with

only using normally logged user browsing data, even though the eye-tracked users are

different from testing users. We found that user gaze behavior follows an F-pattern

rather than showing a center effect in a grid-based interface. In addition, we find that

user gaze behavior is different in different usage modes which suggests that collect-

ing and training on a specific task is better, especially for system designers who have

knowledge about the main task that their users are engaged in.

Further, we studied the interpretation of user inaction going beyond user attention

124

125

identifying other possible categories of reasons for user inaction inspired by the theories

of human behavioral decision making. In recommender systems literature, inaction or

missing observations is usually treated as negative feedback [104, 72, 111]. We demon-

strated through a field survey in a live movie recommender system that inaction is more

complex than the assumption. For example, there is a high chance that when a user

skips a recommendation because the users wants to explore the recommendation later

or the user has decided to accept the recommendation, user inaction could actually be

positive feedback. We designed and tested models to infer user inaction and found that

user inaction inference is generally a hard task. We achieved significantly better classifi-

cation accuracy than naively predicting with the majority class and hence demonstrated

that it is possible to infer user inaction, especially for certain categories, e.g., whether

the user has consumed a recommendation before. Lastly, we demonstrated that the

inaction model inferring different inaction reasons can help improve action prediction

and recommendation timing.

Since we know that users may not pay attention to all of recommendations dis-

played on a page, we might be better off spreading the best recommendations across

multiple pages. We conduct an online field experiment to test two approaches of ma-

nipulating top-N recommendations: cycling, i.e., the reranking of items in the top-N

recommendation list based on users past exposure to these items, and serpentining, i.e.,

the reranking of top-N item list by mixing the best-predicted items into later recom-

mendation requests. We find interesting tensions between opt-outs and activities, user

perceived accuracy and freshness. Intra-session cycling might be a “love it or hate it”

recommender property, because users in it have a higher opt-out rate, but also engage in

more activities such as page views, ratings, clicks and wishlistings, especially for those

who stay. Inter-session cycling and serpentining increase activity without significantly

increasing opt-out rate. Users perceive more change and freshness on cycled recommen-

dations and less accuracy, familiarity on both cycled and serpentined recommendations.

Combining cycling and serpentining does not work as well as each individual manipu-

lation.

User interaction reflects user engagement with recommender systems. Besides bet-

ter understanding the user interaction process with a system, we can also treat user

interaction as an objective to optimize for, i.e., designing recommendation models to

126

maximize the probability of user interaction or engagement. In this work, we conducted

a large-scale randomized, controlled between-subjects field experiment to study six rec-

ommenders built using machine learning techniques, ranging from supervised matrix

factorization, contextual bandit learning to Q learning, to compare recommenders that

optimize for being accurate in preference estimation with ones that optimize for being

engaging. We found that maximizing the user action probability of recommendations

engages users more than maximizing the predicted rating or preference of users on rec-

ommendations modeled with the classical matrix factorization algorithms. However, the

effects are mixed in a way that not only positive engagement but also negative engage-

ment are increased substantially, which gives us a caution from the user’s perspective

on targeting implicit action only because overall user satisfaction could be negatively

affected. We show that blending signals in both explicit and implicit user feedback

through an online interactive learning algorithm gain the benefits of engagement and

mitigate one of the possible costs (i.e., the increased browsing effort). We tested the ap-

proach of utilizing user return as a delayed feedback signal on recommendation quality

through Q-learning. It does not improve user experience with our current design but

provides with potentially helpful implications for future work on recommender systems

applying reinforcement learning.

Finally, my research promotes that recommender system research and practice can

benefit from going from offline to online environments because it better connects the

user-centric research and offline algorithmic and modeling research in recommender

systems. In the long run, it can help answer the important questions of how recommen-

dation technologies affect user perception, experience, satisfaction and people’s life. We

demonstrate that we can support this type of work by designing generic server frame-

works. We provide an example framework through an open-source project along with

case studies to show that this framework can support real world applications and fulfill

the goal of accelerating going from offline to online.

8.1 Contribution

In summary, following the user-centric approach, my thesis has made contributions on

the field of recommender systems by answering the following series of questions regarding

127

the online user-system interaction process in recommender systems, i.e.

• Do users pay attention to all the displayed recommendations in a typical grid-

based recommender interface? How well can we predict user attention on the grid

of recommendations?

– Users on average only pay attention to fewer than half of the recommenda-

tions presented in the recommender interface. We can predict user attention

on a grid of recommendations fairly accurately especially when boosted with

eye tracking data from an initial set of users.

• How to interpret user inaction? how well can we infer the categories of user

inaction reasons? How to utilize the inferred category of user inaction?

– We summarized seven categories of reasons for user inaction which are prefer-

ence, context, attention, information, competition, decision and (re-)consumption.

Inferring the user inaction reasons is a hard tasks but we can achieve sub-

stantially better-than-random accuracy (47% for a 7-class classification task)

and therefore we are able to utilize this inaction model to improve action

prediction and potentially recommendation timing.

• Should we always present the top-N recommendations from best to worst? How

does cycling and serpentining top-N item lists affect user experience?

– We may want to delay our best recommendations into later page views to

engage users and better utilize user attention when browsing recommenda-

tions. However, there is a trade-off between engagement and efficiency. For

some users who want to see the best recommendations right away, delay-

ing the presentation of best recommendations might negatively affect user

perception on the usefulness of the recommender.

• How does treating user interaction or engagement as the objective to optimize for

in recommender systems affect user experience, compared with optimizing for the

traditional accuracy of user preference estimation? How to better optimize for

user interaction or engagement?

128

– A recommender maximizing the action probability of recommendations can

better engage users than a recommender maximizing the preference of users

on the recommendations. However, we need to be careful in targeting action

only because this type of feedback data is noisier than user’s explicit prefer-

ence feedback and hence could substantially increase user negative engage-

ment as well. Interactively blending the two recommenders through online

learning algorithms can help gain the benefits of positive user engagement

and mitigate some of the negative costs, e.g., increased browsing effort from

users.

• With user experience as the ultimate system goal, what type of software tools are

possibly needed to accelerate the study of user-system interaction in recommender

systems, especially for those based on complex learning algorithms?

– We propose a generic recommender server framework that provides with a

complete set of tools for all the functionalities that a recommendation algo-

rithm needs to go from offline setting to online environments where real-time

response to user recommendation requests is demanded. We demonstrate

that this server framework is extensible (e.g., it can easily integrate with

state-of-the-art machine learning libraries and systems), flexible (e.g., it en-

ables complex model dependency and supports new types of research work

based on online interactive learning) and potentially scalable.

8.2 Future Work

We envision two kinds of extensions to HMMs used in the work predicting gaze patterns

of users on grids of recommendations. First, it is possible to consider individual-level,

in addition to current global modeling if a user has enough page views. Second, the

fixation duration on a position is modeled implicitly through state self-transitioning,

which essentially assumes that the duration follows a geometric distribution [141]. This

assumption may not be valid especially when more factors are introduced such as pref-

erences to explain fixation duration. Hidden Semi-Markov Models (HSMM) have been

proposed to account for it and successfully applied in speech recognition [142]. Applying

129

HSMM in our setting is a promising future direction.

An important piece of future work on top of the user inaction interpretation is

to test the effects of this inaction model on user experience through designing and

deploying field experiments. This can help answer the question of whether this model

may improve recommendation freshness without hurting accuracy or ease the confusion

of recommender systems that are based on dynamic algorithms learning from user action

feedback neglecting user inaction.

The results of cycling and serpentining overall suggest that these two approaches of

manipulating the top-N list have certain attractive properties, but future work is needed

to design and test approaches that can increase freshness and even novelty without

compromising accuracy, because we show that all of these aspects contribute positively

to user-perceived usefulness and overall satisfaction. We also consider it necessary to

conduct more detailed studies by inviting users into the lab, recording them using the

system, and interviewing them in order to fully understand the effects. In addition to

the presented results, we also find users using the recommender less often but reporting

higher perceived accuracy. It suggests that an ideal recommender should be there

to assist but not stand in the way to consumption, because most recommenders only

provide access to the actual service being consumed. As suggested by Knijnenburg et

al. [83] and McNee et al. [81], more future research on evaluating recommender systems

from both system and user perspectives is desired.

Regarding the generic recommender server, as possible future work, we plan to de-

sign visualization tools to ease the process of creating and customizing recommendation

engines so that it can support creating experimental platforms where cutting-edge aca-

demic research results easily go into applications to be evaluated and adopted. We

might also explore supporting security and access control to expose the server to the

outside web instead of hiding behind an application server to target being a open recom-

mendation service. Another promising future work is to provide support for front-end

presentation and logging of an application, i.e., the server returns not only a list of

results but also a formatting instruction indicating how the results should be displayed

to users. With this support, we can enable embedding standard user-centric evaluation

instruments (e.g., carefully designed survey questions), gaining a better understanding

of the relationships between easy-to-compute offline metrics and hard-to-measure user

130

experience.

8.3 Implication

My research on studying the online interaction process of users in recommender systems

has implications on two potentially significant directions in the field.

First, focusing on going from offline to online enables establishing cross-domain ex-

perimental platforms that support fast user-centric field evaluation of recommendation

techniques to gain a better understanding (ideally developing integrative theories on)

how recommendation techniques impact user experience and people’s life. For example,

we need build systematic understanding on how algorithmic manipulation affects user

perception, cognition and development. In this booming era of artificial intelligence and

its increasingly large influence on our societies, this thread of work can be critical and

pressing.

Second, building recommender systems that are mindful of user interaction process

can go beyond creating delightful user experience. It leads to research on systems that

promote user interaction and benefit users from their deep interaction with the sys-

tem. For example, a recommender system that interactively presents online learners

with learning materials based on the user’s mental state can better motivate learners

to learn and encourage deep learning processes to happen. These potential advance-

ments can play a significant role in developing the next-generation personalized learning

environments in both traditional and online education.

References

[1] Shuo Chang, F Maxwell Harper, and Loren Terveen. Using groups of items for

preference elicitation in recommender systems. In Proceedings of the 18th ACM

Conference on Computer Supported Cooperative Work & Social Computing, pages

1258–1269. ACM, 2015.

[2] Dan Cosley, Shyong K Lam, Istvan Albert, Joseph A Konstan, and John Riedl. Is

seeing believing?: how recommender system interfaces affect users’ opinions. In

Proceedings of the SIGCHI conference on Human factors in computing systems,

pages 585–592. ACM, 2003.

[3] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl.

Evaluating collaborative filtering recommender systems. ACM TOIS, 22(1):5–53,

2004.

[4] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir

techniques. ACM Transactions on Information Systems (TOIS), 20(4):422–446,

2002.

[5] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based

collaborative filtering recommendation algorithms. In Proceedings of the 10th

international conference on World Wide Web, pages 285–295. ACM, 2001.

[6] Joseph A Konstan and Ekstrand Michael D. Introduction to recommender sys-

tems. Coursera.org, 2017.

[7] Simon Funk. Netflix update: Try this at home, 2006.

131

132

[8] Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender

systems. In Data Mining (ICDM), 2011 IEEE 11th International Conference on,

pages 497–506. IEEE, 2011.

[9] Evangelia Christakopoulou and George Karypis. Local item-item models for top-n

recommendation. In Proceedings of the 10th ACM Conference on Recommender

Systems, pages 67–74. ACM, 2016.

[10] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recommender

systems. In Recommender systems handbook, pages 191–226. Springer, 2015.

[11] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver.

Multiverse recommendation: n-dimensional tensor factorization for context-aware

collaborative filtering. In Proceedings of the fourth ACM conference on Recom-

mender systems, pages 79–86. ACM, 2010.

[12] Gediminas Adomavicius and YoungOk Kwon. Multi-criteria recommender sys-

tems. In Recommender systems handbook, pages 847–880. Springer, 2015.

[13] Mario Rodriguez, Christian Posse, and Ethan Zhang. Multiple objective opti-

mization in recommender systems. In Proceedings of the sixth ACM conference

on Recommender systems, pages 11–18. ACM, 2012.

[14] Chhavi Rana and Sanjay Kumar Jain. A study of the dynamic features of recom-

mender systems. Artificial Intelligence Review, pages 1–13, 2015.

[15] Yehuda Koren. Collaborative filtering with temporal dynamics. Communications

of the ACM, 53(4):89–97, 2010.

[16] Wenxing Hong, Lei Li, and Tao Li. Product recommendation with temporal

dynamics. Expert systems with applications, 39(16):12398–12406, 2012.

[17] Linas Baltrunas and Xavier Amatriain. Towards time-dependant recommendation

based on implicit feedback. In Workshop on context-aware recommender systems

(CARS09), 2009.

[18] Yehuda Koren, Robert Bell, Chris Volinsky, et al. Matrix factorization techniques

for recommender systems. Computer, 42(8):30–37, 2009.

133

[19] Léon Bottou and Yann LeCun. Large scale online learning. In NIPS, volume 30,

page 77, 2003.

[20] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Application of

dimensionality reduction in recommender system-a case study. Technical report,

DTIC Document, 2000.

[21] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong

Yu. Svdfeature: a toolkit for feature-based collaborative filtering. Journal of

Machine Learning Research, 13(Dec):3619–3622, 2012.

[22] Josef Bauer and Alexandros Nanopoulos. A framework for matrix factorization

based on general distributions. In Proceedings of the 8th ACM Conference on

Recommender systems, pages 249–256. ACM, 2014.

[23] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classi-

fication and regression trees. CRC press, 1984.

[24] Jerome H Friedman. Greedy function approximation: a gradient boosting ma-

chine. Annals of statistics, pages 1189–1232, 2001.

[25] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[26] Yue Wang, Dawei Yin, Luo Jie, Pengyuan Wang, Makoto Yamada, Yi Chang,

and Qiaozhu Mei. Beyond ranking: Optimizing whole-page presentation. In

Proceedings of the Ninth ACM International Conference on Web Search and Data

Mining, pages 103–112. ACM, 2016.

[27] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and

context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4):19,

2016.

[28] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD

cup and workshop, volume 2007, page 35. New York, NY, USA, 2007.

[29] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender

systems handbook. Springer, 2011.

134

[30] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,

Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, et al. The

youtube video recommendation system. In Proceedings of the fourth ACM con-

ference on Recommender systems, pages 293–296. ACM, 2010.

[31] Christopher JC Burges. From ranknet to lambdarank to lambdamart: An

overview. Learning, 11(23-581):81, 2010.

[32] Dirk Bollen, Mark Graus, and Martijn C Willemsen. Remembering the stars?:

effect of time on preference retrieval from memory. In Proceedings of the sixth

ACM conference on Recommender systems, pages 217–220. ACM, 2012.

[33] Christopher JC Burges, Robert Ragno, and Quoc Viet Le. Learning to rank with

nonsmooth cost functions. In NIPS, volume 6, pages 193–200, 2006.

[34] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collabo-

rative filtering model. In Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 426–434. ACM, 2008.

[35] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit

approach to personalized news article recommendation. In Proceedings of the 19th

international conference on World wide web, pages 661–670. ACM, 2010.

[36] Guy Shani, David Heckerman, and Ronen I Brafman. An mdp-based recommender

system. Journal of Machine Learning Research, 6(Sep):1265–1295, 2005.

[37] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning,

volume 135. MIT Press Cambridge, 1998.

[38] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.

Recurrent recommender networks. Training, 10(2):10–1.

[39] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforce-

ment learning. In International Conference on Machine Learning, pages 652–661,

2016.

135

[40] Georgios Theocharous, Philip S Thomas, and Mohammad Ghavamzadeh. Person-

alized ad recommendation systems for life-time value optimization with guaran-

tees. In IJCAI, pages 1806–1812, 2015.

[41] Timothy J Buschman and Earl K Miller. Top-down versus bottom-up control of

attention in the prefrontal and posterior parietal cortices. science, 315(5820):1860–

1862, 2007.

[42] Claudia Roda. Human attention and its implications for human-computer inter-

action. Human Attention in Digital Environments, 1:11–62, 2011.

[43] John M Findlay and Iain D Gilchrist. Active vision: The psychology of looking

and seeing. Number 37. Oxford University Press, 2003.

[44] David Marr and Tomaso Poggio. A computational theory of human stereo vision.

Proceedings of the Royal Society of London B: Biological Sciences, 204(1156):301–

328, 1979.

[45] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual

attention for rapid scene analysis. IEEE Transactions on pattern analysis and

machine intelligence, 20(11):1254–1259, 1998.

[46] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Torralba. Learning to

predict where humans look. In Computer Vision, 2009 IEEE 12th international

conference on, pages 2106–2113. IEEE, 2009.

[47] Moran Cerf, Jonathan Harel, Wolfgang Einhäuser, and Christof Koch. Predicting

human gaze using low-level saliency combined with face detection. In Advances

in neural information processing systems, pages 241–248, 2008.

[48] Benjamin W Tatler, Mary M Hayhoe, Michael F Land, and Dana H Ballard. Eye

guidance in natural vision: Reinterpreting salience. Journal of vision, 11(5):5–5,

2011.

[49] Benjamin W Tatler and Benjamin T Vincent. The prominence of behavioural

biases in eye guidance. Visual Cognition, 17(6-7):1029–1054, 2009.

136

[50] Stephen R Ellis and Lawrence Stark. Statistical dependency in visual scanning.

Human factors, 28(4):421–438, 1986.

[51] Selim S Hacisalihzade, Lawrence W Stark, and John S Allen. Visual perception

and sequences of eye movement fixations: A stochastic modeling approach. IEEE

Transactions on systems, man, and cybernetics, 22(3):474–481, 1992.

[52] John M Henderson, Svetlana V Shinkareva, Jing Wang, Steven G Luke, and Jenn

Olejarczyk. Predicting cognitive state from eye movements. PloS one, 8(5):e64937,

2013.

[53] Amin Haji-Abolhassani and James J Clark. A computational model for task

inference in visual search. Journal of vision, 13(3):29–29, 2013.

[54] Soussan Djamasbi, Marisa Siegel, and Tom Tullis. Visual hierarchy and view-

ing behavior: An eye tracking study. In International Conference on Human-

Computer Interaction, pages 331–340. Springer, 2011.

[55] Benjamin W Tatler. The central fixation bias in scene viewing: Selecting an

optimal viewing position independently of motor biases and image feature distri-

butions. Journal of vision, 7(14):4–4, 2007.

[56] Laura A Granka, Thorsten Joachims, and Geri Gay. Eye-tracking analysis of user

behavior in www search. In Proceedings of the 27th annual international ACM

SIGIR conference on Research and development in information retrieval, pages

478–479. ACM, 2004.

[57] Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web search ranking

by incorporating user behavior information. In Proceedings of the 29th annual in-

ternational ACM SIGIR conference on Research and development in information

retrieval, pages 19–26. ACM, 2006.

[58] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.

Accurately interpreting clickthrough data as implicit feedback. In Proceedings of

the 28th annual international ACM SIGIR conference on Research and develop-

ment in information retrieval, pages 154–161. Acm, 2005.

137

[59] Ye Chen and Tak W Yan. Position-normalized click prediction in search adver-

tising. In Proceedings of the 18th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 795–803. ACM, 2012.

[60] Georges E Dupret and Benjamin Piwowarski. A user browsing model to predict

search engine click data from past observations. In Proceedings of the 31st annual

international ACM SIGIR conference on Research and development in informa-

tion retrieval, pages 331–338. ACM, 2008.

[61] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. An experimental

comparison of click position-bias models. In Proceedings of the 2008 International

Conference on Web Search and Data Mining, pages 87–94. ACM, 2008.

[62] Ramakrishnan Srikant, Sugato Basu, Ni Wang, and Daryl Pregibon. User brows-

ing models: relevance versus examination. In Proceedings of the 16th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

223–232. ACM, 2010.

[63] Olivier Chapelle and Ya Zhang. A dynamic bayesian network click model for web

search ranking. In Proceedings of the 18th international conference on World wide

web, pages 1–10. ACM, 2009.

[64] Andrew T Duchowski, Nathan Cournia, and Hunter Murphy. Gaze-contingent

displays: A review. CyberPsychology & Behavior, 7(6):621–634, 2004.

[65] Jeff Huang, Ryen White, and Georg Buscher. User see, user point: gaze and cursor

alignment in web search. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 1341–1350. ACM, 2012.

[66] Qi Guo and Eugene Agichtein. Towards predicting web searcher gaze position

from mouse movements. In CHI’10 Extended Abstracts on Human Factors in

Computing Systems, pages 3601–3606. ACM, 2010.

[67] Georg Buscher, Ludger van Elst, and Andreas Dengel. Segment-level display time

as implicit feedback: a comparison to eye tracking. In Proceedings of the 32nd in-

ternational ACM SIGIR conference on Research and development in information

retrieval, pages 67–74. ACM, 2009.

138

[68] Georg Buscher, Edward Cutrell, and Meredith Ringel Morris. What do you see

when you’re surfing?: using eye tracking to predict salient regions of web pages.

In Proceedings of the SIGCHI conference on human factors in computing systems,

pages 21–30. ACM, 2009.

[69] Sylvain Castagnos, Nicolas Jones, and Pearl Pu. Eye-tracking product recom-

menders’ usage. In Proceedings of the fourth ACM conference on Recommender

systems, pages 29–36. ACM, 2010.

[70] Songhua Xu, Hao Jiang, and Francis Lau. Personalized online document, image

and video recommendation via commodity eye-tracking. In Proceedings of the

2008 ACM conference on Recommender systems, pages 83–90. ACM, 2008.

[71] Kai Puolamäki, Jarkko Salojärvi, Eerika Savia, Jaana Simola, and Samuel Kaski.

Combining eye movements and collaborative filtering for proactive information

retrieval. In Proceedings of the 28th annual international ACM SIGIR conference

on Research and development in information retrieval, pages 146–153. ACM, 2005.

[72] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit

feedback datasets. In 2008 Eighth IEEE International Conference on Data Mining,

pages 263–272. Ieee, 2008.

[73] Katja Hofmann, Anne Schuth, Alejandro Bellogin, and Maarten De Rijke. Effects

of position bias on click-based recommender evaluation. In European Conference

on Information Retrieval, pages 624–630. Springer, 2014.

[74] Hillel J Einhorn and Robin M Hogarth. Behavioral decision theory: Processes of

judgement and choice. Annual review of psychology, 32(1):53–88, 1981.

[75] Jerome R Busemeyer and James T Townsend. Decision field theory: A dynamic-

cognitive approach to decision making in an uncertain environment. Psychological

review, 100(3):432, 1993.

[76] Jerome R Busemeyer and Joseph G Johnson. Computational models of decision

making. Blackwell handbook of judgment and decision making, pages 133–154,

2004.

139

[77] Marius Usher and James L McClelland. The time course of perceptual choice: the

leaky, competing accumulator model. Psychological review, 108(3):550, 2001.

[78] Frank Y Guo and Keith J Holyoak. Understanding similarity in choice behavior:

A connectionist model. In Proceedings of the twenty-fourth annual conference of

the cognitive science society, pages 393–398, 2002.

[79] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive

algorithms for collaborative filtering. In Proceedings of the Fourteenth conference

on Uncertainty in artificial intelligence, pages 43–52. Morgan Kaufmann Publish-

ers Inc., 1998.

[80] Yue Shi, Martha Larson, and Alan Hanjalic. List-wise learning to rank with

matrix factorization for collaborative filtering. In Proceedings of the fourth ACM

conference on Recommender systems, pages 269–272. ACM, 2010.

[81] Sean M McNee, John Riedl, and Joseph A Konstan. Being accurate is not enough:

how accuracy metrics have hurt recommender systems. In CHI’06 extended ab-

stracts on Human factors in computing systems, pages 1097–1101. ACM, 2006.

[82] Joseph A Konstan and John Riedl. Recommender systems: from algorithms to

user experience. User modeling and user-adapted interaction, 22(1):101–123, 2012.

[83] Bart P Knijnenburg, Martijn C Willemsen, Zeno Gantner, Hakan Soncu, and

Chris Newell. Explaining the user experience of recommender systems. User

Modeling and User-Adapted Interaction, 22(4-5):441–504, 2012.

[84] Martin Fishbein and Icek Ajzen. Belief, attitude, intention, and behavior: An

introduction to theory and research. 1977.

[85] Sean M McNee, John Riedl, and Joseph A Konstan. Making recommendations

better: an analytic model for human-recommender interaction. In CHI’06 ex-

tended abstracts on Human factors in computing systems, pages 1103–1108. ACM,

2006.

140

[86] Pearl Pu, Li Chen, and Rong Hu. A user-centric evaluation framework for rec-

ommender systems. In Proceedings of the fifth ACM conference on Recommender

systems, pages 157–164. ACM, 2011.

[87] Viswanath Venkatesh, Michael G Morris, Gordon B Davis, and Fred D Davis.

User acceptance of information technology: Toward a unified view. MIS quarterly,

pages 425–478, 2003.

[88] Bo Xiao and Izak Benbasat. E-commerce product recommendation agents: use,

characteristics, and impact. MIS quarterly, 31(1):137–209, 2007.

[89] Michael D Ekstrand, Michael Ludwig, Joseph A Konstan, and John T Riedl.

Rethinking the recommender research ecosystem: reproducibility, openness, and

lenskit. In Proceedings of the fifth ACM conference on Recommender systems,

pages 133–140. ACM, 2011.

[90] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[91] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Arm-

brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

Michael J Franklin, et al. Apache spark: a unified engine for big data processing.

Communications of the ACM, 59(11):56–65, 2016.

[92] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Soft-

ware available from tensorflow.org.

141

[93] Bob Carpenter, Andrew Gelman, Matt Hoffman, Daniel Lee, Ben Goodrich,

Michael Betancourt, Michael A Brubaker, Jiqiang Guo, Peter Li, and Allen Rid-

dell. Stan: A probabilistic programming language. Journal of Statistical Software,

20, 2016.

[94] Simon Chan, Thomas Stone, Kit Pang Szeto, and Ka Hou Chan. Predictionio: a

distributed machine learning server for practical software development. In Pro-

ceedings of the 22nd ACM international conference on Information & Knowledge

Management, pages 2493–2496. ACM, 2013.

[95] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John

Riedl. Grouplens: an open architecture for collaborative filtering of netnews. In

CSCW, 1994.

[96] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,

and Qiang Yang. One-class collaborative filtering. In ICDM’08, pages 502–511.

IEEE, 2008.

[97] Mackenzie G Glaholt and Eyal M Reingold. Eye movement monitoring as a pro-

cess tracing methodology in decision making research. Journal of Neuroscience,

Psychology, and Economics, 4(2):125, 2011.

[98] Claudia Roda. 2 human attention and its implications for human–computer in-

teraction. Human Attention in Digital Environments, 1:11–62, 2011.

[99] John M Findlay. Active vision: The psychology of looking and seeing. 2014.

[100] David Marr, Tomaso Poggio, Ellen C Hildreth, and W Eric L Grimson. A com-

putational theory of human stereo vision. Springer, 1991.

[101] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the royal statistical society.

Series B (methodological), pages 1–38, 1977.

[102] John Mullahy. Specification and testing of some modified count data models.

Journal of econometrics, 33(3):341–365, 1986.

142

[103] Shuang-Hong Yang, Bo Long, Alexander J Smola, Hongyuan Zha, and Zhaohui

Zheng. Collaborative competitive filtering: learning recommender using context

of user choice. In Proceedings of the 34th international ACM SIGIR conference on

Research and development in Information Retrieval, pages 295–304. ACM, 2011.

[104] Pei Lee, Laks VS Lakshmanan, Mitul Tiwari, and Sam Shah. Modeling impression

discounting in large-scale recommender systems. In Proceedings of the 20th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

1837–1846. ACM, 2014.

[105] Qian Zhao, Gediminas Adomavicius, F Maxwell Harper, Martijn Willemsen, and

Joseph A Konstan. Toward better interactions in recommender systems: Cy-

cling and serpentining approaches for top-n item lists. In Proceedings of the 2017

ACM Conference on Computer Supported Cooperative Work and Social Comput-

ing, pages 1444–1453, 2017.

[106] Qian Zhao, Shuo Chang, F Maxwell Harper, and Joseph A Konstan. Gaze pre-

diction for recommender systems. In Proceedings of the 10th ACM Conference on

Recommender Systems, pages 131–138. ACM, 2016.

[107] Yosef Hochberg and Yoav Benjamini. More powerful procedures for multiple sig-

nificance testing. Statistics in medicine, 9(7):811–818, 1990.

[108] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and

Data Mining. ACM, 2016.

[109] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[110] Steffen Rendle. Factorization machines with libfm. ACM Transactions on Intel-

ligent Systems and Technology (TIST), 3(3):57, 2012.

[111] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Proceed-

ings of the twenty-fifth conference on uncertainty in artificial intelligence, pages

452–461. AUAI Press, 2009.

143

[112] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. Im-

proving recommendation lists through topic diversification. In Proceedings of the

14th international conference on World Wide Web, pages 22–32. ACM, 2005.

[113] Lex Van Velsen, Thea Van Der Geest, Rob Klaassen, and Michael Steehouder.

User-centered evaluation of adaptive and adaptable systems: a literature review.

The knowledge engineering review, 23(3):261–281, 2008.

[114] Nisheeth Srivastava and Paul Schrater. Learning what to want: context-sensitive

preference learning. PloS one, 10(10):e0141129, 2015.

[115] Xin Luo, Yunni Xia, and Qingsheng Zhu. Incremental collaborative filtering rec-

ommender based on regularized matrix factorization. Knowledge-Based Systems,

27:271–280, 2012.

[116] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictio-

nary learning for sparse coding. In Proceedings of the 26th annual international

conference on machine learning, pages 689–696. ACM, 2009.

[117] Tyler Lu, Dávid Pál, and Martin Pál. Contextual multi-armed bandits. In Pro-

ceedings of the Thirteenth international conference on Artificial Intelligence and

Statistics, pages 485–492, 2010.

[118] Gerard J Tellis. Advertising exposure, loyalty, and brand purchase: A two-stage

model of choice. Journal of marketing research, pages 134–144, 1988.

[119] Colin McDonald. What is the short-term effect of advertising. Mass. Marketing

Science Institute, 1971.

[120] Richard E Petty and John T Cacioppo. The elaboration likelihood model of

persuasion. In Communication and persuasion, pages 1–24. Springer, 1986.

[121] Komal Kapoor, Karthik Subbian, Jaideep Srivastava, and Paul Schrater. Just in

time recommendations: Modeling the dynamics of boredom in activity streams.

In Proceedings of the Eighth ACM International Conference on Web Search and

Data Mining, pages 233–242. ACM, 2015.

144

[122] Pearl Pu, Li Chen, and Rong Hu. Evaluating recommender systems from the

users perspective: survey of the state of the art. User Modeling and User-Adapted

Interaction, 22(4-5):317–355, 2012.

[123] Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances

in neural information processing systems, pages 831–838, 1992.

[124] Xavier Amatriain and Justin Basilico. Netflix recommendations: beyond the 5

stars (part 1). Netflix Tech Blog, 6, 2012.

[125] F Maxwell Harper, Funing Xu, Harmanpreet Kaur, Kyle Condiff, Shuo Chang,

and Loren Terveen. Putting users in control of their recommendations. In Pro-

ceedings of the 9th ACM Conference on Recommender Systems, pages 3–10. ACM,

2015.

[126] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement

learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[127] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B Kantor. Recommender

systems handbook. Springer, 2015.

[128] Charu C Aggarwal. Recommender systems. Springer, 2016.

[129] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[130] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statis-

tical learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

[131] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,

volume 1. MIT press Cambridge, 1998.

[132] Shai Shalev-Shwartz and Yoram Singer. Online learning: Theory, algorithms, and

applications. 2007.

[133] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforce-

ment learning. arXiv preprint arXiv:1511.03722, 2015.

145

[134] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.

Recurrent recommender networks. In Proceedings of the Tenth ACM International

Conference on Web Search and Data Mining, pages 495–503. ACM, 2017.

[135] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-

Thieme. Mymedialite: a free recommender system library. In Proceedings of

the fifth ACM conference on Recommender systems, pages 305–308. ACM, 2011.

[136] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector ma-

chines. ACM transactions on intelligent systems and technology (TIST), 2(3):27,

2011.

[137] Mu Li, Ziqi Liu, Alexander J Smola, and Yu-Xiang Wang. Difacto: Distributed

factorization machines. In Proceedings of the Ninth ACM International Conference

on Web Search and Data Mining, pages 377–386. ACM, 2016.

[138] Xing Yi, Liangjie Hong, Erheng Zhong, Nanthan Nan Liu, and Suju Rajan. Be-

yond clicks: dwell time for personalization. In Proceedings of the 8th ACM Con-

ference on Recommender systems, pages 113–120. ACM, 2014.

[139] Qian Zhao, F Maxwell Harper, Gediminas Adomavicius, and Joseph A Konstan.

Explicit or implicit feedback? engagement or satisfaction? a field experiment

on machine learning based recommender systems. In Proceedings of the 33rd

ACM/SIGAPP Symposium On Applied Computing. ACM, 2018.

[140] Qian Zhao, Bennett Paul N., Adam Fourney, Anne Loomis Thompson, Shane

Williams, Adam D. Troy, and Susan T. Dumais. Calendar-aware proactive email

recommendation. In Proceedings of The 41st International ACM SIGIR Confer-

ence on Research & Development in Information Retrieval. ACM, 2018.

[141] Lawrence R Rabiner. A tutorial on hidden markov models and selected applica-

tions in speech recognition. Proc. IEEE, 77(2):257–286, 1989.

[142] Jack D Ferguson. Variable duration models for speech. In Proc. Symposium on

the Application of HMMs to Text and Speech, pages 143–179, 1980.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Interactivity of Online Recommender Systems
	Problems and Approaches
	The Research Platform: MovieLens
	Thesis Overview
	Do users see the recommendations?
	What does user inaction mean?
	Should we always show the best?
	Accuracy, engagement or satisfaction?
	How to support going from offline to online?

	Related Work
	Classical Works in Recommender Systems
	Machine Learning Models
	User Modeling
	User-Centric Evaluation
	Recommender Toolkits and Machine Learning Libraries

	Gaze Modeling in Grid-Based Interfaces
	Introduction
	Related Work
	Building Models for the Gaze Prediction Problem
	Building Linear Models
	Building Hidden Markov Models

	Methods
	User Browsing Dataset in MovieLens
	Eye Tracking Protocol Design and Dataset
	Evaluation

	Results
	Discussion

	Interpreting User Inaction Feedback
	Introduction
	Related Work
	Data Collection
	Interpreting User Inaction
	Future Recommendation
	Classifying User Inaction
	Improve Recommendation
	Discussion

	Cycling and Serpentining of Top-N Lists
	Introduction
	Related Work
	Experiment Design
	Measurements

	Results
	Discussion

	Optimizing for User Interaction
	Introduction
	Background of User-Centric Research
	Background of Machine Learning
	Empirical Risk Minimization
	Matrix Factorization
	Q Learning
	Regret Minimization
	Contextual Bandit and LinearUCB

	Method
	The Six Recommenders
	Objective Measurements
	Subjective Measurements

	Results
	Measurements Interpretation
	RQ1
	RQ2

	Discussion

	A Generic Recommender Server
	Introduction
	Related Work
	The Generic Server Design
	Recommender Components and Extensibility
	Server Interface, Architecture and Scalability
	Using the Server

	Case Studies
	Extension and Integration
	Online Recommender Blending
	System-Level Cold-Start

	Discussion

	Conclusion
	Contribution
	Future Work
	Implication

	References

