
From Preference into Decision Making: Modeling User 
Interactions in Recommender Systems 

Qian Zhao∗ Martijn C. Willemsen Gediminas Adomavicius 
Bloomberg L.P. Eindhoven University of Technology F. Maxwell Harper 

New York, United States Eindhoven, The Netherlands Joseph A. Konstan 
qzhao101@bloomberg.net Jheronimus Academy of Data Science University of Minnesota 

’s-Hertogenbosch, The Netherlands Minneapolis, United States 
M.C.Willemsen@tue.nl gedas,max,konstan@umn.edu 

ABSTRACT 
User-system interaction in recommender systems involves three 
aspects: temporal browsing (viewing recommendation lists and/or 
searching/fltering), action (performing actions on recommended 
items, e.g., clicking, consuming) and inaction (neglecting or skip-
ping recommended items). Modern recommenders build machine 
learning models from recordings of such user interaction with the 
system, and in doing so they commonly make certain assumptions 
(e.g., pairwise preference orders, independent or competitive proba-
bilistic choices, etc.). In this paper, we set out to study the efects of 
these assumptions along three dimensions in eight diferent single 
models and three associated hybrid models on a user browsing data 
set collected from a real-world recommender system application. 
We further design a novel model based on recurrent neural net-
works and multi-task learning, inspired by Decision Field Theory, 
a model of human decision making. We report on precision, recall, 
and MAP, fnding that this new model outperforms the others. 
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1 INTRODUCTION 
The process of user-system interaction in standard recommender 
systems involves three aspects: user browsing (item displays), action 
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and inaction. For example, in Youtube or Netfix etc., users typically 
browse items page by page and make decisions of whether to act 
upon some of the items or not, e.g., click to see details or directly 
consume. 

When recognizing what’s displayed, we can model user decisions 
as temporal processes of information gathering, paying attention, 
reasoning and decision making. The temporal aspect here is difer-
ent from the classical user preference temporal dynamics modeled 
in prior work [9] where user interest is shifting across time between 
choices. We instead focus on the accumulative user attention on 
items temporally and the temporal dependency of a user’s current 
behavior on the user’s past interactions in the system, which may 
or may not involve user interest shift. The user-item interaction 
is also contextual because of the competition efects among items 
displayed together in a page. This user choice process has been 
modeled in prior work, e.g., the Collaborative Competitive Filtering 
in [17]. 
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Figure 1: The connectionist network representation of DFT. 
Formal accounts of behavioral decision making processes can 

be found in psychology literature, among which we fnd that the 
Decision Field Theory (DFT) [2] is particularly relevant here. This 
theory postulates a temporal deliberation process in the context 
where people are faced with multiple choices. Fig. 1 illustrates what 
happens in each unit of time (i.e., the deliberation process is the 
temporal replication of Fig. 1). The frst layer of the network models 
people’s attention on the important aspects of the choices, which 
forms contrast in the second layer that models the competition 
among the choices and produces valence in the third layer, which 
recurrently accumulates to produce preference. The double-direction 
connections among the choices in the fnal layer models the efect of 
lateral inhibition (i.e., a choice that happens to win out frst might 
dominate later). DFT addresses both the choice context and the 
temporal dependency of choices. This directly matches the scenario 
in screen-based recommender systems where users browse items 
page by page and make decisions of action or not (note that in 
recently studied voice-driven recommender systems [7, 16], this 
process however may not apply). 
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As suggested by DFT, preference is actually the end result of 
micro-level decision making processes. However, many if not most 
prior modeling research in recommender systems have been on 
preference estimation only without going into modeling the un-
derlying processes. For example, typical recommendation models 
assume certain parameters to represent a user which could be a 
single latent vector or a whole interaction history of the user repre-
sented by latent vectors and then ft the user feedback data observed 
in the system, e.g., through the models of regression for explicit 
rating feedback as by [8], or point-wise binary logistic model af-
ter negative sampling for implicit action feedback as by [6], or 
learning-to-rank, particularly pairwise ranking as by [12], in which 
the relative preference order is ftted. 

Besides the gap between the actual account of user decision 
making and simplifed preference estimation models, we also notice 
that there is not much prior work systematically examining how 
modeling assumptions implicitly made by recommendation models 
afect recommendation accuracy or quality. In this paper, we set 
out to study the efects of these diferent modeling assumptions 
on a user browsing, action and inaction data set from a real-world 
recommender system application. 

To further close the gap, we turn from modeling preference into 
modeling the decision making process of users inspired by the DFT 
above based on the techniques of RNN [14] and multi-task learning 
(MTL) [13]. The benefts of this human theory driven approach 
could be better recommendation accuracy, which we demonstrate 
in this work, and more importantly potential better user experience, 
which we discuss in the end. 

2 RELATED WORK: USER & PREDICTION 
MODELING 

In this section, we set up notations and synthesize a conceptual 
framework of User & Prediction Modeling from prior work. Sim-
ilar disentanglement of recommendation modeling was done by 
Yang et al. for designing an extensible recommendation software 
tool: OpenRec [15]. A prominently diferent characteristic of recom-
mendation modeling compared with general supervised machine 
learning is the step of learning user representations or user state 
(profle) modeling. Many recommendation techniques model the 
current user state and items with a low-dimensional vector space 
and predict the user’s preferences on items by matching the two 
[9, 10]. 

Assume we have a user state model that combines user profle 
and context factors and lies in a low-dimensional space Rd . De-
note s = s(u) ∈ Rd as the current user’s state vector in which u 
represents the user ID, profle and history in the system. We also 
sometimes use notation u to refer to a specifc user ID depending 
on the context. 

2.1 User Models: SVD and SVD++ 
Latent factor models have been designed to represent users and 
make predictions in recommender systems, e.g., SVD by [10] and 
SVD++ by [9]. In SVD, the user representation is simply a d dimen-
sional latent vector, denoted as Uu where U ∈ RN ×d and N is the 
number of users in the system, i.e., s(u) = Uu . Note that we omit 
the user (and item) bias (or scalar) representations which model the 
global biases of users (and items) of the feedback distribution for 

the simplicity of presentation. In SVD++, the user representation 
also incorporates the whole set of interacted items by the user as 
shown in Equation 1 where |I | is the set of acted-upon items and 
Q ∈ RM ×d represents the event of action by a user on an item.Õ1 

s(u) = Uu + p Qi (1)
2 |I | i ∈I 

2.2 User Model: Recurrent Neutral Networks 
Neural network based models can also be used to model user state 
in recommender systems. We examine a Recurrent-Neural Network 
(RNN) based model that has recently been demonstrated more 
efective than prior techniques and models a user as the user’s 
temporal action sequence in the system [4, 14]. For a user sequence, 
each step is a vector representation of the item that the user acted 
upon (e.g., liked, consumed), concatenating the embeddings of not 
only the item ID but also its side information, overall denoted 
as CAT (θut ) where θ denotes the embedding or transformation 
parameters of ut . In the simplest case, each step can be Qat where 
at is an item ID, similar to SVD++. One widely used step transition 
model for the sequence model is LSTM by [5]. Additional layers of 
transformation can be applied before modeling the transition with 
LSTM, e.g., through a layer of Rectifed Linear Units (ReLU) by [11]. 
In summary, a RNN model has the following user state model s in 
Equation 2 where t represents the time step. 

st (u) = LST M(st −1(u), ReLU (Qat )) (2) 

2.3 Prediction Models 
Denote o(v) as the item representation vector where v represents 
the item ID and the properties of an item including its side informa-
tion. In the simplest case, o(v) = Wa where W ∈ RM×d represents 
the embeddings of item IDs. With the user state s and item rep-
resentation o, making predictions on items involves modeling the 
match between the two f (s, o). A typical choice is the inner product 

Tof s and o, i.e., f (s, o) = s o. This prediction function is used to 
approximate or learn from user feedback r , which could be user 
actions (e.g. purchase, consumption etc.) on items, user browsing or 
item displays, or sampled items as pseudo negative observations. 

Three possible ways of ftting the observations r can be found 
in prior literature: the logistic model, e.g., by [6] (treating the ob-
servations as following independent Bernoulli distributions), the 
pairwise ranking model, e.g., by [12] (modeling the relative pref-
erence order) and the softmax model, e.g., by [17] (treating the 
feedback as an observation of an exclusive categorical distribution). 

The logistic model involves a sigmoid transformation д(f ) = 
1/(1 + exp(−f )). It models independently for each user-item pair 
with a label r ∈ 1, 0 as shown in Equation 3. 

p�(r |u,v) = дr (1 − д)1−r (3) 
The pairwise ranking model collectively models a pair of items 

that a user has a relative preference order, e.g., a user prefers an 
item a over an item b is modeled as Equation 4 which also involves 
transformation д. �p(ra > rb |u,va ,vb ) = д(f (s, o(va ) − o(vb ))) (4) 

The softmax model collectively models a positive item and a set 
of negative items (which could be sampled) as shown in Equation 5, 
where i are k are indexing in the α + 1 observations, which include 
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one positive and other negative ones, i.e., α is the negative sample 
size and a here is an one-hot encoded representation of the positive 
and negative item IDs. 

exp(f (s, oi ))
p�(a |u,v) = pba (ai = 1|u,v) = Íα +1 (5) 

=1 exp(f (s, ok ))k 

3 THE EXAMINED MODELS 
Table 1 (Models S1-8) lists eight models we examine in this work 
following the User&Prediction modeling framework. Note that it is 
not a factorial design but instead designed to gradually increase 
the model complexity. 

To further explain some of them, 
• CTR: This is ftting the action probability (e.g., Click-Through 
Rate) using standard matrix factorization model SVD. 

• CCF : This is the Collaborative Competitive Filtering model 
[17]. It has two versions D-CCF or S-CCF depending on 
where the negative items come from. Note that for D-CCF, we 
build a softmax for each page view of items because this best 
fts the Decision Field Theory and the recommender system 
applications where users typically browse items page by page 
and make decisions of whether to act upon the displayed 
items. For page views without any interactions, D-CCF as 
proposed by [17] introduces a user-specifc parameter θu to 
model the threshold each user prefers to reach for action 
as shown in Equation 6. This situation does not apply for 
S-CCF which uses a normal softmax loss as in Equation 5 
where negative items are randomly sampled. 

• BPR: This is the pairwise ranking model where the assump-
tion is that user prefers positive items over negative items 
which could be displayed but without action (D-BPR) or 
sampled through negative sampling (S-BPR). 

exp(f (s, oi ))
p�(a |u,v) = pba (ai = 1|u,v) = Íα +1 (6)

θu + =1 exp(f (s, ok ))k 

3.1 Retrieving & Ranking Based Hybrid 
We further examine a two-stage recommendation modeling frame-
work: retrieving and ranking to explore the possibilities of hybrid 
models. In this framework, the retrieving model initially retrieves 
a set of candidate items and the ranking model further ranks the 
candidates to make fnal recommendation. This modeling frame-
work can be used to combine models for user browsing and action 
feedback data, which might be efective because what’s displayed or 
recommended is usually higher-quality items. Models built on item 
displays and their actions might perform well on higher-quality 
items but might not generalize well on all items and vice versa. 
In this work, we tested three ranking models built on displayed 
positive action and negative inaction items combined with one re-
trieving model built on positive action and sampled negative items 
as listed in Table 1 (Models H1-3). Note that the frst model (before 
& sign) is for retrieving and the second model (after & sign) is for 
ranking. 

3.2 Page Level RNN (PL-RNN) 
Applying the Decision Field Theory (DFT) into recommender sys-
tems takes simplifcation and adaptation. First, the attention weights 

RNN (LSTM)

Displayed Item at+1,1 …, at+1,n Softmax Acted-upon Item at+1,1 …, at+1,m Softmax

ReLU

Item at,1 Action or Inaction Embedding Item at,m Action or Inaction Embedding… ...

page view t+1

page view t

Figure 2: The architecture of the Page-Level RNN model. 
Each page view has n items and m of them are acted upon 
by the user. The input embedding diferentiates acted-upon 
items or inaction items, i.e., the vocabulary of the embed-
dings is 2× the item vocabulary. 

and the connection weights in Fig. 1 are unknown and to be esti-
mated from data. Second, the exact match of the deliberation in 
DFT is one page view in recommender systems which however 
lacks observational data to estimate the network weights unless 
there is eye-tracking data. Therefore, we turn to model the whole 
user page view sequence as the deliberation process so that Fig. 
1 corresponds to one page view in the user page view sequence. 
Further, we represent an item as low-dimensional embedding vec-
tor, each dimension of which corresponds to a latent property that 
users pay attention to. For the contrast layer, we use a ReLU layer 
and for the recurrent valence layer, we use a RNN layer. This model 
can be directly matched with Eq. 2 except that the input comes 
not from one acted-upon item but from a page of displayed items 
with or without actions. Their embeddings are concatenated as the 
input of the network. The model is fully illustrated by Fig. 2. We 
name this model as Page-Level RNN (PL-RNN). For the last output 
layer, we ft not only the observed acted-upon items but also all 
the displayed items in the next page view to estimate the network 
weights, i.e., the technique of multi-task learning (MTL) [13]. 

4 EXPERIMENTS AND RESULTS 
To evaluate the list of models in Table 1, we conducted experiments 
on a data set of user browsing (item displays), (positive) action 
and inaction items collected from a real-world movie recommender 
system application MovieLens (https://movielens.org), which has 
around 60K movies in its database. The data set has 45M movie 
displays and 1.16M (positive) actions (which specifcally refers to 
high ratings, i.e., >= 4 out of 5 stars, clicking to see details or adding 
into a wishlist) from 22K real users between Jan. 12, 2017 and Jan. 
14, 2018. The item displays came from two types of page views: 
the front page which by default displays 48 items and the explore 
page which by default displays 24 items (in a 3 × 8 grid). We use 
m = 24 for Fig. 2 and split the front page view into two page views, 
which we think is a reasonable assumption because users naturally 
browse from the top to the bottom of the page. This can be similarly 
done for other interfaces in diferent systems. 

We employed a temporal training and testing procedure, treat-
ing the data from Jan. 12, 2017 until Oct. 31, 2017 as the train-
ing data and the rest as the testing data. The metrics we used are 
Precision@8-24, Recall@8-24, MAP@8-24 (Mean Average Preci-
sion) evaluating the top-N recommendation accuracy, i.e., how 

https://movielens.org
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Table 1: Modeling factors and evaluation results of all the examined models in this work and the new PL-RNN model. S1-8 are 
single models. H1-3 are hybrid models (see Section 3.1). 

accurate and c

User Model Prediction Model Negative Items Model 

SVD 

SVD++ 
RNN 

RNN&SVD 

PL-RNN 

Precision Recall MAP 
@8 @15 @20 @24 @8 @15 @20 @24 @8 @15 @20 @24 

logistic 
displayed but inaction 

S1. CTR 0.0017 0.0042 0.0041 0.0038 0.0004 0.0021 0.0027 0.0030 0.0006 0.0007 0.0006 0.0005 
softmax S2. D-CCF 0.0014 0.0035 0.0044 0.0042 0.0003 0.0017 0.0029 0.0033 0.0006 0.0006 0.0006 0.0005 

pairwise S3. D-BPR 0.139 0.121 0.112 0.107 0.0371 0.0605 0.0744 0.0855 0.114 0.098 0.092 0.090 

sampled 

S4. S-BPR 0.140 0.129 0.116 0.109 0.0372 0.0646 0.0774 0.0873 0.106 0.096 0.089 0.086 
logistic S5. SVD 0.147 0.127 0.118 0.113 0.0391 0.0635 0.0789 0.0900 0.104 0.087 0.081 0.078 

softmax 
S6. S-CCF 0.132 0.123 0.110 0.103 0.0351 0.0615 0.0733 0.0821 0.097 0.088 0.082 0.080 
S7. SVD++ 0.137 0.134 0.120 0.111 0.0365 0.0671 0.0802 0.0888 0.106 0.099 0.092 0.088 
S8. RNN 0.157 0.151 0.133 0.130 0.0832 0.0943 0.1201 0.1433 0.119 0.115 0.104 0.101 

softmax&logistic 
both 

H1. RNN&CTR 0.089 0.099 0.122 0.123 0.0327 0.0495 0.0961 0.1396 0.040 0.043 0.053 0.056 
softmax&softmax H2. RNN&D-CCF 0.094 0.102 0.124 0.126 0.0324 0.0489 0.1049 0.1422 0.037 0.040 0.051 0.056 
softmax&pairwise H3. RNN&D-BPR 0.168 0.154 0.141 0.130 0.0879 0.0990 0.1250 0.1449 0.140 0.130 0.118 0.111 

softmax both PL-RNN 0.170 0.147 0.147 0.140 0.0870 0.1058 0.1295 0.1556 0.141 0.136 0.122 0.118 

omplete the recommendation model can be in pre-
dicting the future positively acted-upon items. Note that top-N=8 to 
24 here corresponds to the grid size in the interface described above. 
The embedding dimension in all models is d = 32. The number 
of sampled negative items is α = 2000. We used AdaGrad by [3] 
to train all the models until convergence. The ranking model fur-
ther re-ranks 24 retrieved candidate items by the retrieving model. 
All models are implemented in TensorFlow [1] and open sourced 
(https://github.com/grouplens/samantha). 

Table 1 shows the results. Since diferent metrics are generally 
consistent with each other in terms of the trend, for simplicity of 
presentation, we focus on comparing MAP@8 (shown in bold in the 
table). First, we see that PL-RNN model performs the best. CTR and 
D-CCF do not seem to learn much about user preferences because 
their metric is orders of magnitude lower compared with others. 
D-BPR and S-BPR achieve similar level of accuracy while SVD and 
S-CCF perform comparatively. D-BPR or S-BPR generally performs 
better than SVD and S-CCF. SVD++ performs slightly better than 
SVD, but RNN demonstrates a much bigger improvement compared 
with SVD++. Further ranking using D-BPR on the retrieved candi-
dates from RNN leads to a substantial performance boost. PL-RNN 
as one single model has similar level of performance improvement 
compared with RNN and further performs consistently better than 
the hybrid case RNN&D-BPR. 

5 DISCUSSION AND CONCLUSION 
To discuss the results, we highlight the key modeling factors studied 
in this work here, along which our results could be generalized: 

• User State (or User Model): which could be static (e.g., SVD), 
a set of interacted items (e.g., SVD++), or sequential (e.g., 
RNN) 

• Preference Assumption (or Prediction Model): which could 
be independent binary choices (e.g., logistic loss), categorical 
competitive choices (e.g., softmax loss), or relative preference 
(e.g., pairwise ranking) 

• Item Feedback Space: which could be (positive) action items 
with negative samples, displayed action and inaction items, or 
the hybrid of the two (through e.g., Retrieving&Ranking or 
PL-RNN) 

We can make the following observations regarding each of these 
factors and how they interact with each other. 

First, we observe that softmax and logistic preference (prediction 
or loss) models are very sensitive to the choice of negative items, i.e., 
these models only learn well on negative items obtained through 

negative sampling, not on items that are displayed but do not have 
user action (comparing the model SVD vs. CTR and S-CCF vs. D-
CCF ). On the other hand, pairwise preference models can learn 
equally well on both types of negative items, which demonstrates 
the robustness of this method as a way of inferring user preferences 
(comparing the model D-BPR vs. S-BPR). What’s more, pairwise 
preference models seem to have better recommendation accuracy 
than softmax or logistic models in terms of MAP scores (comparing 
the model S-BPR vs. SVD or S-CCF ). 

Modeling user actions as a sequence through RNN seems to learn 
a substantially better user representation since it achieves better 
recommendation accuracy compared with the user models of SVD 
or SVD++ (comparing the model RNN vs. SVD or SVD++). Further, 
we can gain substantially better recommendation accuracy by com-
bining the RNN model built on positive and sampled negative items 
and the pairwise ranking model built on displayed and action or 
inaction items following the modeling framework of Retrieving & 
Ranking (comparing RNN&D-BPR vs. RNN ). 

We propose to model the user temporal interactions with rec-
ommender systems in the page view level to capture the temporal 
dependencies among the sequence of user page views and the com-
petition efects of context items displayed together in the page view. 
The model is better aligned with the theory of human decision 
making from psychology literature, going beyond point-wise or 
pairwise user preferences between positive and negative items. We 
demonstrate that this page-level model has the best recommen-
dation accuracy among all the models we compared. Especially, 
it gains a substantial accuracy improvement compared with the 
RNN that only models the sequence of positive items ignoring the 
observations of user browsing or item displays. 

It is interesting future work to study how this page-level model 
afects user experience through a feld experiment testing specifc 
hypotheses on user perception. Since the state representation of 
this model encodes not only what’s acted upon, but also what’s 
been displayed to users, we conjecture that it might be able to 
mitigate situations where users are bored by the same repeated 
recommendations, or confusing situations where users couldn’t 
fnd previously recommended items. 
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