Categorical-Attributes-Based Item Classification for Recommender Systems

Qian Zhao (Bloomberg L.P. *) Jilin Chen, Minmin Chen, Sagar Jain, Alex Beutel, Francois Belletti, Ed H. Chi (Google Inc.)

^{*} Work done while interning at Google Inc.

Multi-Class Classification for Recommendation

Problem

- The possible number of classes or items is huge.
- Expensive softmax normalization across the whole catalog of items
 - Normalization goal is to compute the negative log likelihood loss.

$$\widehat{p_a}(a_i = 1) = \frac{exp(f(s, o_i))}{\sum_{k=1}^{\alpha+1} exp(f(s, o_k))}$$

In Practice

- To speed up: use negative sampling.
 - Normalize across sampled smaller set of classes or items (with correction)

$$\widehat{p_a}(a_i = 1) = \frac{exp(f(s, o_i))}{\sum_{k=1}^{\alpha+1} exp(f(s, o_k))}$$

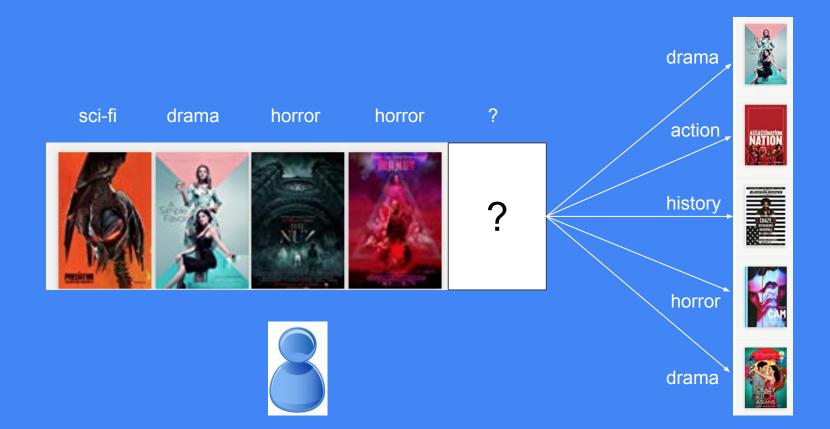
In Practice

- To speed up: use negative sampling.
 - Normalize across sampled smaller set of classes or items (with correction)

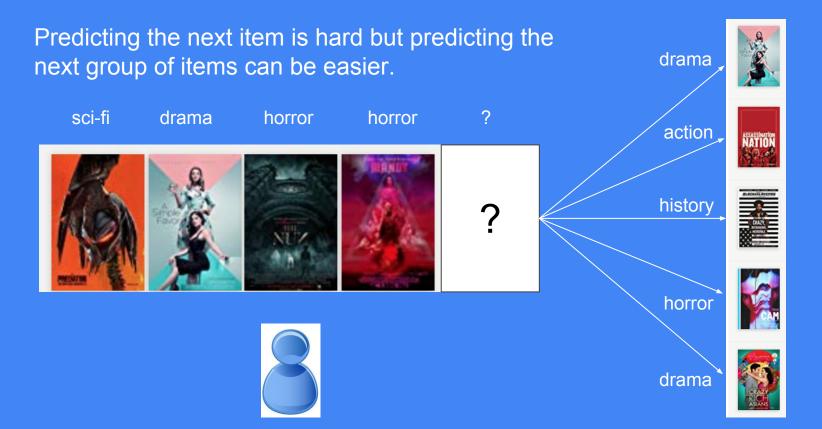
$$\widehat{p_a}(a_i = 1) = \frac{exp(f(s, o_i))}{\sum_{k=1}^{\alpha+1} exp(f(s, o_k))}$$

Can we improve on top of this?

Motivation: Utilizing Item Grouping Structure



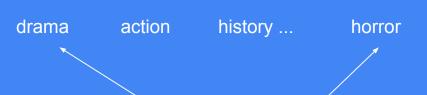
Motivation: Utilizing Item Grouping Structure



How to utilize this grouping structure?

Two Approaches:

- Multi-task learning (MTL)
- Hierarchical classification or softmax (HSM)

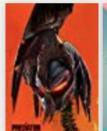


drama

horror

horror

topic softmax



item softmax

drama

action

history ...

horror

Improving user embedding model?

drama

horror

horror

topic softmax

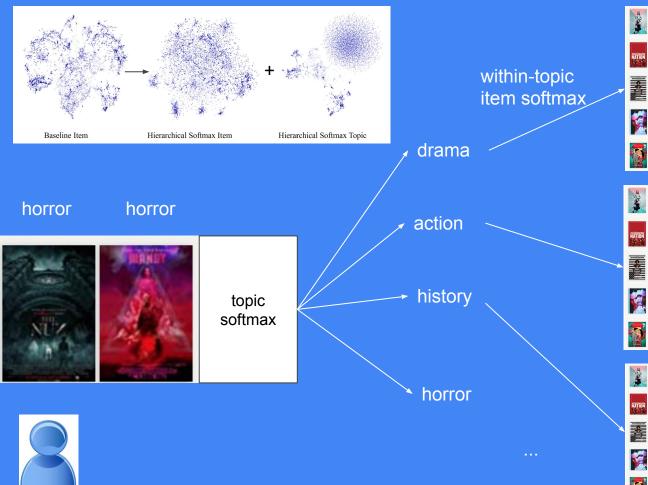
item softmax

HSM

sci-fi

Reducing one harder task to two simpler tasks?

drama



Experiments

Data Set 1: Public Behance Data Set (He et al. RecSys'16)

	Statistic	Size	Summary	Size
	#users	63,497	min	1
	#items	178,788	25%	1
Attribute ——	→ #owners	51487	median	2
	#appreciations	1M	75%	4
			max	153

Data Set 2: Proprietary Large-Scale Data Set

Statistic	Size	Summary	Topic Size	Publisher Size
#users	Hundreds of Millions	min	1	1
#items	2M	25%	1	1
#topics	600K	median	1	1
#publishers	800K	75%	3	2
#consumptions	Hundreds of Billions	max	38K	3.5K

Model	Item MAP@5
SVDFeature	0.0035
SVDFeature+MTL	0.0044 (+25.7%)
SVDFeature+HSM	0.0046 (+31.4%)
RNN	0.0099
RNN+MTL	0.0104 (+5%)
RNN+HSM	0.0129 (+30.3%)

Model	Attribute	Item MAP@5
RNN	N.A.	0.151
RNN+MTL	Topic	0.163 (+7.9%)
KININ+IVITL	Publisher	0.156 (+3.3%)
RNN+HSM	Topic	0.184 (+21.8%)
MNIN+HSIVI	Publisher	0.182 (+20.5%)

Summary:

MTL and HSM better than both SVDFeature and RNN alone. But HSM has larger gain.

Model	Item MAP@5
SVDFeature	0.0035
SVDFeature+MTL	0.0044 (+25.7%)
SVDFeature+HSM	0.0046 (+31.4%)
RNN	0.0099
RNN+MTL	0.0104 (+5%)
RNN+HSM	0.0129 (+30.3%)

N.A.
0.020
0.025
N.A.
0.027
0.024

Summary:

Predicting item groups (attribute) is indeed easier than predicting items.

Model	Attribute	Item MAP@5	Attribute MAP@5
RNN	N.A.	0.151	N.A.
RNN+MTL	Topic	0.163 (+7.9%)	0.336
KININ+IVITL	Publisher	0.156 (+3.3%)	0.293
RNN+HSM	Topic	0.184 (+21.8%)	0.337
IMNIN+HSIVI	Publisher	0.182 (+20.5%)	0.295

Summary:

Predicting item groups (attribute) is indeed easier than predicting items.

What if the grouping structure is noisy?

Does the benefit of HSM still hold?

Model	Noise	Item MAP@5
SVDFeature	N.A.	0.0035
	0.0	0.0046 (+31.4%)
SVDFeature+HSM	0.1	0.0045 (+28.5%)
	0.2	0.0047 (+34.2%)
	0.6	0.0038 (+8.5%)
	1.0	0.0029 (-17.1%)

Model	Randomization	Item MAP@5
RNN	N.A.	0.151
	0.0	0.182 (+20.5%)
	0.1	0.168 (+11.2%)
RNN+HSM	0.2	0.166 (+9.9%)
	0.6	0.152 (+0.6%)
	1.0	0.150 (-0.6%)

Summary:

HSM is robust to noisy grouping structure, but purely random grouping doesn't improve.

Does this help Cold-start items?

H1: Does HSM have more improvement for the long-tail items' prediction?

Does this help Cold-start items?

H1: Does HSM have more improvement for the long-tail items' prediction?

Yes!

Different user generative models?

H2: Does the advantage of HSM generalize across different types of generative models of users?

Two Types of User Generative Models

- Single-Level
- Two-Level

```
#generating the item according to user attribute interest.
if type is Single-Level then
    a \in Z_n \sim_n Softmax(Wu)

c \in Z_n, where c_j = C_{a_j}, j = 1 : n
end
else if type is Two-Level then
    c \in Z_n \sim_n Softmax(Vu)
    a \in Z_n, where a_j \sim Softmax(W_{c_i}u), W_{c_i} is the
      embeddings of the items involved by c_j, j = 1 : n.
end
```

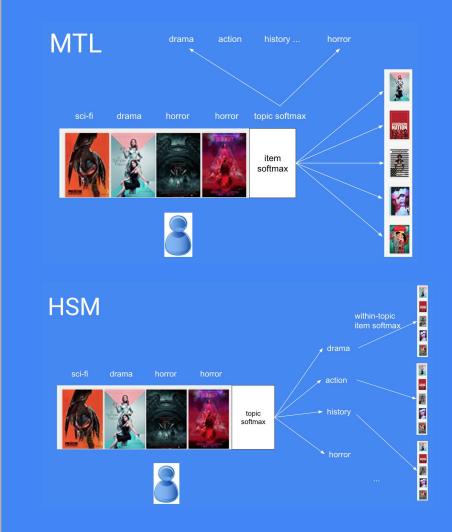
Data Set	Model	AUC
Single Level	SVDFeature	0.592
Single-Level	SVDFeature+HSM	0.668 (+12.8%)
Two-Level	SVDFeature	0.652
Two-Level	SVDFeature+HSM	0.705 (+8.1%)

Summary: HSM improves

HSM improves in both cases!

Summary

The grouping structure of item categorical attributes can be used to improve the multi-class classification model accuracy in recommender systems through MTL and especially HSM.



Implications

- For user-centric researchers
 - Multi-level human preference and decision making process?
- For practitioners
 - Dynamic list/slate recommendation
 - Interactive preference elicitation or conversational recommendation

Acknowledgments

Thanks to

- Google Inc. for supporting this work with an internship
- Bloomberg L.P. for supporting my traveling here

Thanks! Questions?

"Categorical-Attributes-Based Item Classification for Recommender Systems"

Qian Zhao (now at Bloomberg L.P.), Jilin Chen, Minmin Chen, Sagar Jain, Alex Beutel, Francois Belletti, Ed H. Chi (Google Inc.)

Contact:

- jilinc,minminc@google.com
- qzhao101@bloomberg.net (http://qianzhao.me)