From Preference into Decision Making

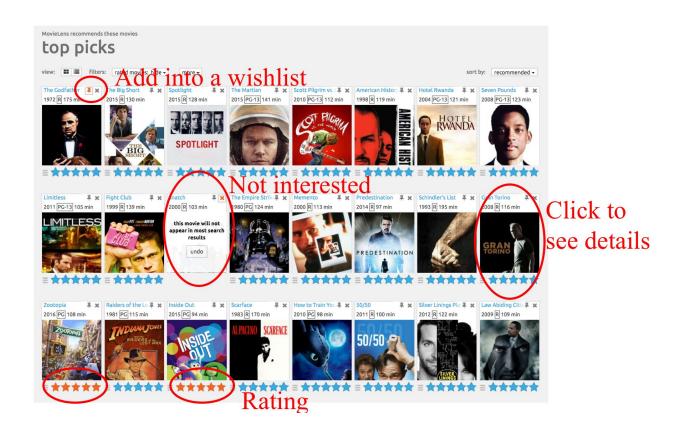
Modeling User Interactions in Recommender Systems

Qian Zhao (Bloomberg, work done during Ph.D. at GroupLens)
Martijn C. Willemsen (Eindhoven University of Technology)
Gediminas Adomavicius (Carlson School of Management, University of Minnesota)
F. Maxwell Harper (Amazon)
Joseph A. Konstan (GroupLens, University of Minnesota)

Recommender Systems

- Most prior research focuses on
 - Learning from user action feedback (e.g., ratings or clicks etc.)
- This work is about
 - Learning from all user browsing (both user action and inaction) activities

Classical Approach: From Explicit/Implicit Feedback to Preference



Explicit/Implicit Feedback and Preference

Key Missing Factor

Within page

comparison

vs. inaction

What about other (inaction) items? top picks 2015 PG-13 141 min 2010 PG-13 112 min 1998 R 119 min 2004 PG-13 121 min 2008 PG-13 123 min HOTEL Not interested redestination 🗸 🗶 Schindler's List 👢 🗶 Click to 1999 R 139 min 2000 R 103 min this movie will not appear in most search see details Decision of action 2011 R 100 min Zhao et al. RecSys'18 Rating

Explicit/Implicit Feedback and Preference

What if this is the 3rd time the user sees this page?

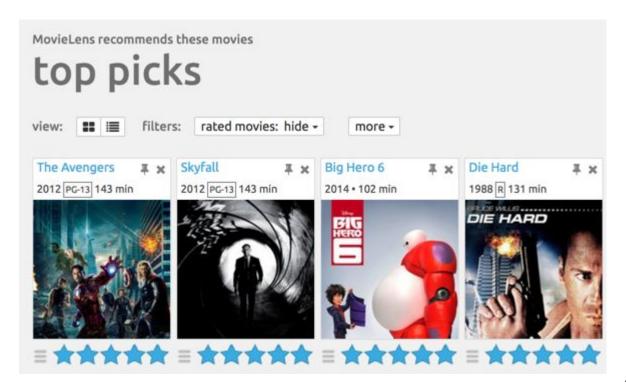
Key Missing Factor

Temporal dependency to prior browsing

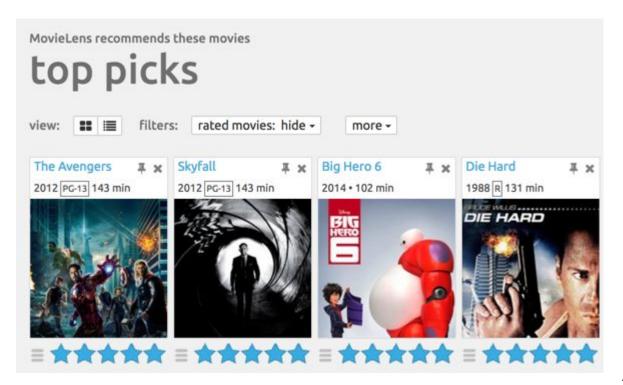
Zhao et al. CSCW'17

Example Impact on User Experience

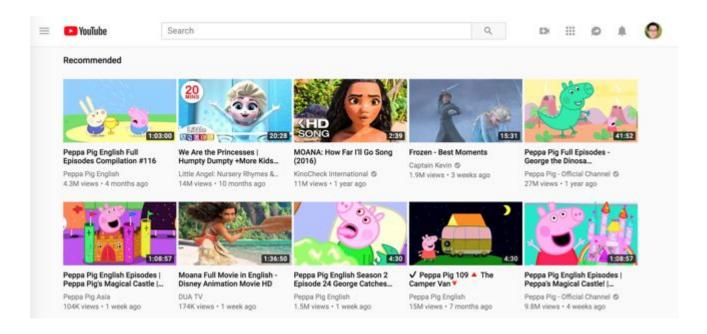
MovieLens



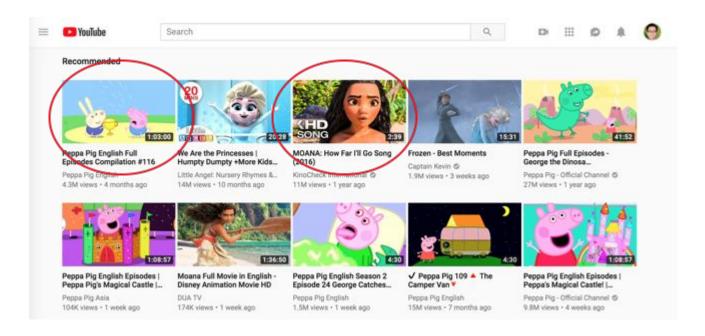
Again and Again



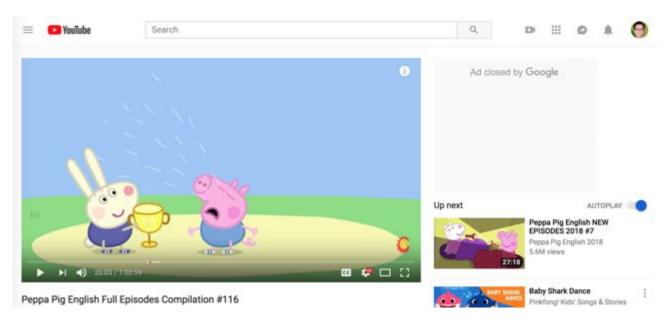
Youtube



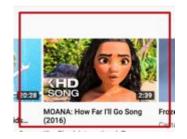
Interested in two of them

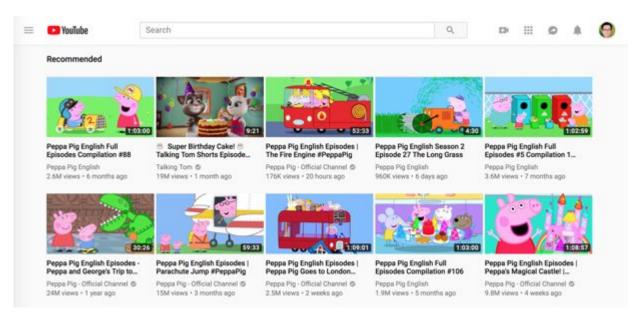


Watch one of the two



Back to home page...?





Problem

- How to model all user browsing activities jointly?
 - Temporal browsing (viewing recommendation lists and/or searching/filtering) page by page
 - Action (performing actions on recommended items, e.g., clicking, consuming) on a page
 - Inaction (neglecting or skipping recommended items) on a page

Decision Field Theory

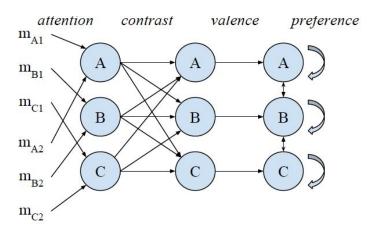


Figure 1: The connectionist network representation of DFT.

Decision Field Theory

Preference is actually the end result of micro-level decision making processes.

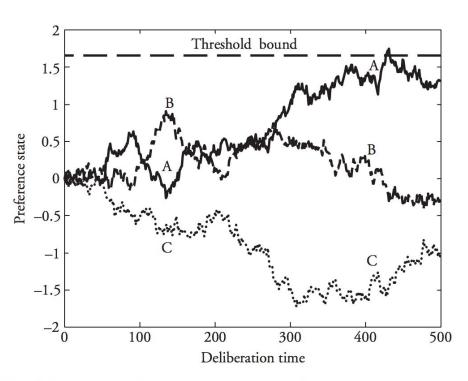
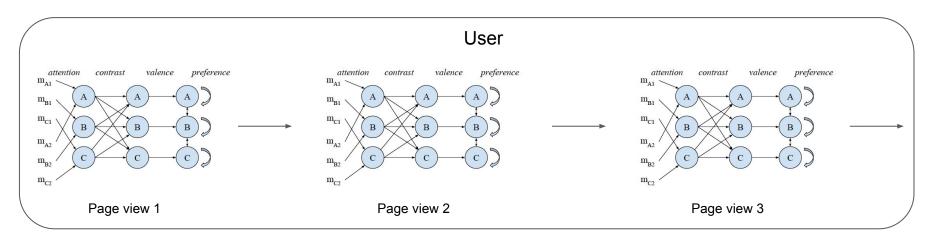


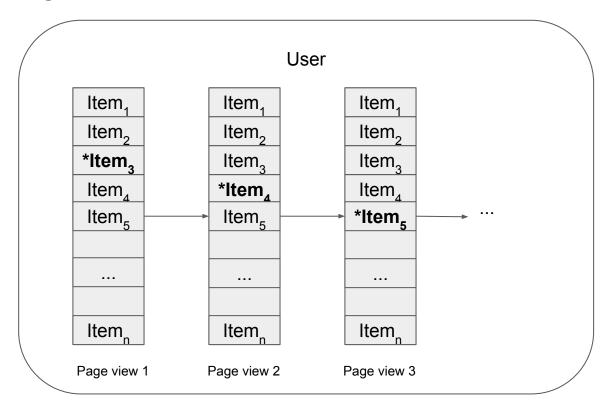
Figure 7.1 The decision process for a choice among three actions

The Page-Level RNN Model



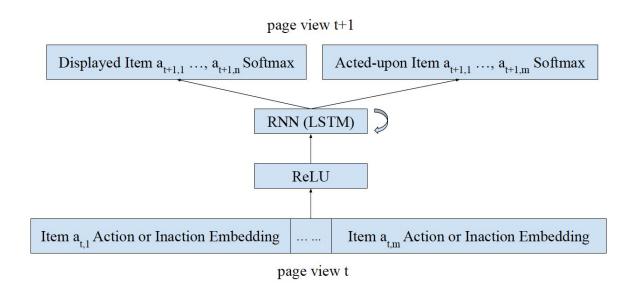
- Learn embeddings instead of using attributes
- Weights are estimated from data
- Page view sequence as the deliberation process
- There are actually 24 items because of the page size in MovieLens.
- Contrast layer is a ReLU layer
- Preference accumulation corresponds to a RNN layer

The Page-Level RNN Model



We used n=24 because of the page size in MovieLens.

The Page-Level RNN Model



Dataset: MovieLens System Logs

- Jan. 12, 2017 to Jan. 14, 2018
- 60K movies
- 22K users
- 45M movie displays and 1.16M (positive) actions
- Temporal splitting
 - Training: Jan. 12, 2017 to Oct. 31, 2017
 - Testing: Nov. 1, 2017 to Jan. 14, 2018

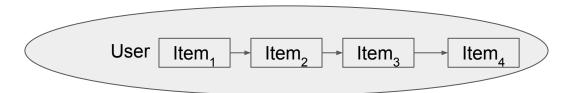
Classical *User* & Preference Models

SVD (Koren et al. 2009):

User

• SVD++ (Koren et al. 2010):

• RNN (Wu et al. 2017):



Results

User Model	MAP@8	
SVD	0.097	
SVD++	0.106	
RNN	0.119	
PL-RNN	0.141	

Modeling user actions as a sequence through RNN seems to learn a better user representation compared with SVD or SVD++

Page-level RNN gains substantially better accuracy than RNN.

Classical User & Preference Models

• Independent binary (logistic; Hu et al. 2008):

$$\widehat{p(r|u,v)} = g^r (1-g)^{1-r}$$

• Competitive (softmax; Yang et al. 2011, CCF): $\widehat{p(a|u,v)} = \widehat{p_a}(a_i = 1|u,v) = \frac{exp(f(s,o_i))}{\sum_{k=1}^{\alpha+1} exp(f(s,o_k))}$

• Relative (pairwise ranking; Rendle et al. 2009): $p(r_a > \widehat{r_b | u, v_a}, v_b) = g(f(s, o(v_a) - o(v_b)))$

"Negative" Items

Negative sampling (Hu et al. 2009)

Displayed but inaction (Yang et al. 2011; Zhao et al. 2018)

Results (MAP@8)

User Model	Preference Model	Displayed but Inaction "Negative"	Sampled "Negative"
SVD	logistic	0.0006	0.104
	softmax	0.0006	0.097
	pairwise ranking	0.114	0.106

Softmax and logistic preference models are sensitive to the choice of negative items.

Pairwise preference models can learn equally well on both types of negative items.

Messages

- Jointly modeling the three aspects (temporal browsing, action and inaction) of user-system interaction in recommender systems has benefits in
 - (this work) offline recommendation accuracy
 - o (maybe, future work) online user experience
- Go from simplified preference assumptions into modeling the complex micro-level user decision making processes.

Thanks! Questions?

- Title: "From Preference into Decision Making: Modeling User Interactions in Recommender Systems"
- Authors: Qian Zhao, Martijn C. Willemsen, Gediminas Adomavicius, F.
 Maxwell Harper, and Joseph A. Konstan.
- Contact: qzhao2018@gmail.com

Hybrid Based on Retrieving & Ranking

Trained with

- Action items as positive
- Randomly sampled as negative

Trained with

- Action items as positive
- Displayed but inaction as negative

Results

User Model	Preference Model	"Negative" Items	MAP@8
SVD			0.097
SVD++	softmax	sampled	0.106
RNN			0.119
RNN & SVD	softmax & pairwise	sampled & displayed but inaction	0.140
PL-RNN	softmax	sampled & displayed but inaction	0.141